Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

42 results about "Arterial spin labeling" patented technology

Arterial spin labeling (ASL), also known as arterial spin tagging, is a magnetic resonance imaging technique used to quantify cerebral blood perfusion by labelling blood water as it flows throughout the brain. ASL specifically refers to magnetic labeling of arterial blood below the imaging slab, without the need of gadolinium contrast, which is the first of its kind in terms of perfusion imaging.

Inside-out echo-planar imaging method for shortening echo time

The invention discloses an inside-out echo-planar imaging method for shortening echo time. The method is characterized in that: a k-space trajectory extends to the outer side of a phase encoding direction from the center, wherein a gradient for generating the trajectory is composed of reading-out gradients which switch between forward and reverse directions and phase encoding gradients which switch between forward and reverse directions and gradually increases from zero. The method further comprises a step that: in order to accommodate the phase encoding gradients of which the area increases gradually without adding an echo spacing, the phase encoding gradient and a data collecting window are permitted to be overlapped. According to the method disclosed by the invention, an effective echo time in a sequence is located in the center of a first echo, the echo time is shortened greatly, and the signal to noise ratio is increased; since the contrast ratio of an image depends on signals of a k-space centre, and data of the k-space center are from an initial echo, T2 or T2* weighing of the obtained image is very small; and in diffusion imaging and arterial spin labeling imaging, the decreasing of the T2 or the T2* weighing is beneficial to improving the quality of the image.
Owner:ZHEJIANG UNIV

Combined arterial spin labeling and magnetic resonance fingerprinting

The invention provides for a method of operating a magnetic resonance imaging system for imaging a subject. The method comprises acquiring (700) tagged magnetic resonance data (642) and a first portion (644) of fingerprinting magnetic resonance data by controlling the magnetic resonance imaging system with tagging pulse sequence commands (100). The tagging pulse sequence commands comprise a tagging inversion pulse portion (102) for spin labeling a tagging location within the subject. The tagging pulse sequence commands comprise a background suppression portion (104). The background suppression portion comprises MRF pulse sequence commands for acquiring fingerprinting magnetic resonance data according to a magnetic resonance fingerprinting protocol. The tagging pulse sequence commands comprise an image acquisition portion (106). The method comprises acquiring (702) control magnetic resonance data (646) and a second portion (648) of the fingerprinting magnetic resonance data by controlling the magnetic resonance imaging system with control pulse sequence commands. The control pulse sequence commands comprise a control inversion pulse portion (202). The control pulse sequence commands comprise the background suppression portion (104′). The control pulse sequence commands comprise the image acquisition portion (106). The method comprises reconstructing (704) tagged magnitude images (650) using the tagged magnetic resonance data. The method comprises reconstructing (706) a control magnitude images (652) using the control magnetic resonance data. The method comprises constructing (708) an ASL image by subtracting the control magnitude images and the tagged magnitude images from each other. The method comprises reconstructing (710) a series of magnetic resonance fingerprinting images (656) using the first portion of the fingerprinting magnetic resonance data and/or the second portion of the fingerprinting magnetic resonance data. The method comprises generating (712) at least one magnetic resonance parametric map (658) by comparing the series of magnetic resonance fingerprinting images with a magnetic resonance fingerprinting dictionary.
Owner:KONINKLJIJKE PHILIPS NV

Arterial spin labeling-based cerebral hypoperfusion region accurate quantification method

ActiveCN112288705AConsistent spatial resolutionImage enhancementImage analysisAnatomical structuresCerebral hypoperfusion
The invention discloses an arterial spin labeling-based cerebral hypoperfusion region accurate quantification method, which comprises the following steps of: firstly, mapping a diffusion weighted image and a cerebral blood flow diagram of a stroke definite diagnosis patient on a spatial anatomical structure through a coarse-to-fine registration strategy; secondly, for the stroke definite diagnosispatient image with the infarction core area, taking the infarction core area extracted by the diffusion weighted image as a seed point, and extracting a hypoperfusion area on the cerebral blood flowdiagram corresponding to the spatial position; otherwise, extracting a hypoperfusion region by taking the high signal region extracted from the cerebral blood flow subtraction image as a seed point; and finally, quantitatively analyzing related parameters of the hypoperfusion area of the stroke definite diagnosis patient, such as the position, the size and the volume of the hypoperfusion area, mismatching of an infarction core / hypoperfusion area and the like. Accurate extraction and quantitative analysis of a hypoperfusion area of a stroke definite patient are helpful for evaluating a time window and a tissue window of a diagnosed patient.
Owner:INNOVATION ACAD FOR PRECISION MEASUREMENT SCI & TECH CAS +1

Combined arterial spin labeling and magnetic resonance fingerprinting

The invention provides for a method of operating a magnetic resonance imaging system for imaging a subject. The method comprises acquiring (700) tagged magnetic resonance data (642) and a first portion (644) of fingerprinting magnetic resonance data by controlling the magnetic resonance imaging system with tagging pulse sequence commands (100). The tagging pulse sequence commands comprise a tagging inversion pulse portion (102) for spin labeling a tagging location within the subject. The tagging pulse sequence commands comprise a background suppression portion (104). The background suppression portion comprises MRF pulse sequence commands for acquiring fingerprinting magnetic resonance data according to a magnetic resonance fingerprinting protocol. The tagging pulse sequence commands comprise an image acquisition portion (106). The method comprises acquiring (702) control magnetic resonance data (646) and a second portion (648) of the fingerprinting magnetic resonance data by controlling the magnetic resonance imaging system with control pulse sequence commands. The control pulse sequence commands comprise a control inversion pulse portion (202). The control pulse sequence commands comprise the background suppression portion (104′). The control pulse sequence commands comprise the image acquisition portion (106). The method comprises reconstructing (704) tagged magnitude images (650) using the tagged magnetic resonance data. The method comprises reconstructing (706) a control magnitude images (652) using the control magnetic resonance data. The method comprises constructing (708) an ASL image by subtracting the control magnitude images and the tagged magnitude images from each other. The method comprises reconstructing (710) a series of magnetic resonance fingerprinting images (656) using the first portion of the fingerprinting magnetic resonance data and / or the second portion of the fingerprinting magnetic resonance data. The method comprises generating (712) at least one magnetic resonance parametric map (658) by comparing the series of magnetic resonance fingerprinting images with a magnetic resonance fingerprinting dictionary.
Owner:KONINKLJIJKE PHILIPS NV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products