Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

329 results about "Common word" patented technology

Method of reducing disturbs in non-volatile memory

In a non-volatile memory, the displacement current generated in non-selected word lines that results when the voltage levels on an array's bit lines are changed can result in disturbs. Techniques for reducing these currents are presented. In a first aspect, the number of cells being simultaneously programmed on a word line is reduced. In a non-volatile memory where an array of memory cells is composed of a number of units, and the units are combined into planes that share common word lines, the simultaneous programming of units within the same plane is avoided. Multiple units may be programmed in parallel, but these are arranged to be in separate planes. This is done by selecting the number of units to be programmed in parallel and their order such that all the units programmed together are from distinct planes, by comparing the units to be programmed to see if any are from the same plane, or a combination of these. In a second, complementary aspect, the rate at which the voltage levels on the bit lines are changed is adjustable. By monitoring the frequency of disturbs, or based upon the device's application, the rate at which the bit line drivers change the bit line voltage is adjusted. This can be implemented by setting the rate externally, or by the controller based upon device performance and the amount of data error being generated.
Owner:SANDISK TECH LLC

Method of reducing disturbs in non-volatile memory

In a non-volatile memory, the displacement current generated in non-selected word lines that results when the voltage levels on an array's bit lines are changed can result in disturbs. Techniques for reducing these currents are presented. In a first aspect, the number of cells being simultaneously programmed on a word line is reduced. In a non-volatile memory where an array of memory cells is composed of a number of units, and the units are combined into planes that share common word lines, the simultaneous programming of units within the same plane is avoided. Multiple units may be programmed in parallel, but these are arranged to be in separate planes. This is done by selecting the number of units to be programmed in parallel and their order such that all the units programmed together are from distinct planes, by comparing the units to be programmed to see if any are from the same plane, or a combination of these. In a second, complementary aspect, the rate at which the voltage levels on the bit lines are changed is adjustable. By monitoring the frequency of disturbs, or based upon the device's application, the rate at which the bit line drivers change the bit line voltage can be adjusted. This can be implemented by setting the rate externally, or by the controller based upon device performance and the amount of data error being generated.
Owner:SANDISK TECH LLC

Nonvolatile semiconductor memory device

ActiveUS7016222B2Higher-reliability data retention characteristicReduce voltage stressSolid-state devicesDigital storageComputer architectureCommon word
A memory cell array is included which is constituted by arranging the plurality of nonvolatile memory cells in a row direction and column direction respectively and arranging the plurality of word lines (WL) and the plurality of bit lines (BL) in the row direction and the column direction respectively in order to select a predetermined memory cell or a memory cell group out of the arranged nonvolatile memory cells, in which the memory cells are respectively constituted by connecting one end of a variable resistive element for storing information in accordance with a change of electrical resistances with the source of a selection transistor while in the memory cell array, the drain of the selection transistor is connected with a common bit line (BL) along the column direction, the other end of the variable resistive element is connected with a source line (SL), and the gate of the selection transistor is connected with the common word line (WL) along the row direction. According to the above memory cell configuration, it is possible to provide a nonvolatile semiconductor memory device capable of reducing voltage stresses applied to the variable resistive element of an unselected memory cell at the time of the reading and programming operations and securing a higher-reliability data holding characteristic.
Owner:SAMSUNG ELECTRONICS CO LTD

Method of reducing disturbs in non-volatile memory

In a non-volatile memory, the displacement current generated in non-selected word lines that results when the voltage levels on an array's bit lines are changed can result in disturbs. Techniques for reducing these currents are presented. In a first aspect, the number of cells being simultaneously programmed on a word line is reduced. In a non-volatile memory where an array of memory cells is composed of a number of units, and the units are combined into planes that share common word lines, the simultaneous programming of units within the same plane is avoided. Multiple units may be programmed in parallel, but these are arranged to be in separate planes. This is done by selecting the number of units to be programmed in parallel and their order such that all the units programmed together are from distinct planes, by comparing the units to be programmed to see if any are from the same plane, or a combination of these. In a second, complementary aspect, the rate at which the voltage levels on the bit lines are changed is adjustable. By monitoring the frequency of disturbs, or based upon the device's application, the rate at which the bit line drivers change the bit line voltage can be adjusted. This can be implemented by setting the rate externally, or by the controller based upon device performance and the amount of data error being generated.
Owner:SANDISK TECH LLC

Nonvolatile semiconductor memory device

ActiveUS20040130939A1Securing higher-reliability data retention characteristicReduce voltage stressSolid-state devicesDigital storageComputer architectureCommon word
A memory cell array is included which is constituted by arranging the plurality of nonvolatile memory cells in a row direction and column direction respectively and arranging the plurality of word lines (WL) and the plurality of bit lines (BL) in the row direction and the column direction respectively in order to select a predetermined memory cell or a memory cell group out of the arranged nonvolatile memory cells, in which the memory cells are respectively constituted by connecting one end of a variable resistive element for storing information in accordance with a change of electrical resistances with the source of a selection transistor while in the memory cell array, the drain of the selection transistor is connected with a common bit line (BL) along the column direction, the other end of the variable resistive element is connected with a source line (SL), and the gate of the selection transistor is connected with the common word line (WL) along the row direction. According to the above memory cell configuration, it is possible to provide a nonvolatile semiconductor memory device capable of reducing voltage stresses applied to the variable resistive element of an unselected memory cell at the time of the reading and programming operations and securing a higher-reliability data holding characteristic.
Owner:SAMSUNG ELECTRONICS CO LTD

Threat intelligence oriented entity identification method and system

The invention relates to a threat intelligence oriented entity identification method and system. The method comprises the following steps: 1) performing coarse word segmentation on a threat information text serving as a training corpus; 2) constructing a threat information entity common word dictionary library and a rule library, and performing dictionary matching and rule matching on a coarse word segmentation result; 3) marking an entity label for each word based on a matching result to form a training set; 4) constructing a feature template, establishing an indication word bank to perfect the screening form of the feature template, generating context features for the training set by using the feature template, screening, and inputting the screened features into a machine learning modelto carry out parameter iterative training; and 5) performing coarse word segmentation, dictionary matching and rule matching on the threat information text to be identified, and performing entity identification by using the trained machine learning model. According to the threat information entity extraction method, the threat information entity extraction is completed by adopting a means of combining a rule, a dictionary and a model, so that the entity identification precision of the threat information is remarkably improved.
Owner:INST OF INFORMATION ENG CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products