Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

49 results about "Sweep rate" patented technology

Interferometric optical fibre sensor system and method of interrogation

The invention relates to a method of interrogating an interferometric optical fiber sensor system including a laser source configured to generate interrogation light and a sensor array with at least a first reflector and a second reflector. The method includes continuously and repeatedly frequency sweeping the interrogation light from the laser source within a sweep bandwidth (SWB) over a sweep duration (tsw) with a substantially constant sweep rate r=SBW / tsw to produce a swept interrogation light signal, launching the swept interrogation light signal into the sensor array, detecting reflected signals being returned from the sensor array by each of the reflectors, respectively, wherein detection includes mixing a return light signal from the sensor array with a local oscillator signal onto an optical receiver to produce an electrical radio frequency signal, demultiplexing the electrical radio frequency signal into a first signal channel and a second signal channel, corresponding to the first and second reflector, respectively, demodulating each of the first and second signal channel into a first phase response from the first reflector and a second phase response from the second reflector, and subtracting the first phase response from the second phase response to obtain a sensor phase signal.
Owner:OPTOPLAN

Apparatus and methods for cleaning and/or processing delicate parts

The invention utilizes harmonics of certain clamped ultrasound transducers to generate ultrasound within the liquid of an ultrasonic tank and in a frequency range of between about 100 khz to 350 khz (i.e., “microsonic” frequencies). The application of microsonic frequencies to liquid preferably occurs simultaneously with a sweeping of the microsonic frequency within the transducer's harmonic bandwidth to reduce or eliminate (a) standing waves within the liquid, (b) other resonances, (c) high energy cavitation implosion, and (d) non-uniform sound fields, each of which is undesirable for cleaning and/or processing of semiconductor wafers and other delicate parts. The invention can also drive ultrasonic transducers such that the frequency of applied energy has a sweep rate within the ultrasonic bandwidth of the transducers; and that sweep rate is also varied so that the sweep rate is substantially non-constant during operation. This reduces or eliminates resonances which are created by transducers operating with a single sweep rate. An ultrasound generator of the invention sometimes utilizes amplitude modulation (AM), and the AM frequency is swept over time so as to reduce resonances. AM control is preferably provided by selecting a portion of the rectified power line frequency. In applications which utilize multiple generators, multiple transducers, and one or more tanks, simultaneously, the invention synchronizes the operation of the generators to a common FM signal to reduce beat frequencies between generators. Each such generator can also be adjusted, through AM, to control the process characteristics within the associated tank. Two or more transducers are sometimes used by the invention, in combination, to broaden the overall bandwidth of acoustical energy applied to the liquid around the primary frequency or one of the harmonics. The bandwidths of the transducers are made to overlap such that an attached generator can drive the transducers, in combination, to deliver ultrasound to the liquid in a broader bandwidth. In a single chamber ultrasound system, two or more generators, each operating or optimized to generate a different range of frequencies, are connected to a multiplexer; and the desired frequency range is selected, and hence the right generator, according to the cavitation implosion energy that is desired within the tank chemistry.
Owner:PUSKAS WILLIAM L

Method and system for the ply-by-ply machining of a component made of composite material, by applying energy

ActiveUS20150099422A1Constant ply machiningAdaptability of amountInvestigating composite materialsAbrasive blasting machinesImage formationProcessing element
The invention relates to machine a component made of composite material in order to eliminate singularities, defects or damage to the component using a method that is repeatable and adaptable. To do this, it is proposed that the defects and their type be identified by image processing of the surface of the component and that the local machining rates at which the plies are machined be regulated at the function of this identification. According to one embodiment, a system (10) for the ply-by-ply machining of defects of a component made of composite material includes a numerical data processing unit (1) combined with a sweep control (2) that commands the sweep of a high-pressure water jet machine (20), and an image formation assembly (3) including an image capturing device (30, 31) connected with the numerical processing unit (1). The processing unit (1) includes regulating devices (11, 13) indexing local sweep rates, by convergence of brightness levels (NB) from the successive sweeps, these being formed by the image capturing assembly (3) toward making the brightness uniform according to a model (Mr) correlating brightness to ply state typology identification (BT) that can be supplied by a library (4). The correlation data (BT) and brightness levels (NB) are stored in memory modules (12, 14) of the processing unit (1).
Owner:JEDO TECH

Interferometric optical fibre sensor system and method of interrogation

The invention relates to a method of interrogating an interferometric optical fibre sensor system including a laser source configured to generate interrogation light and a sensor array with at least a first reflector and a second reflector. The method includes continuously and repeatedly frequency sweeping the interrogation light from the laser source within a sweep bandwidth (SWB) over a sweep duration (tsw) with a substantially constant sweep rate r=SBW / tsw to produce a swept interrogation light signal, launching the swept interrogation light signal is launched into the sensor array, detecting reflected signals being returned from the sensor array by each of the reflectors, respectively, wherein detection includes mixing a return light signal from the sensor array with a local oscillator signal onto an optical receiver to produce an electrical radio frequency signal, demultiplexing the electrical radio frequency signal into a first signal channel and a second signal channel, corresponding to the first and second reflector, respectively, demodulating each of the first and second signal channel into a first phase response from the first reflector and a second phase response from the second reflector, and subtracting the first phase response from the second phase response to obtain a sensor phase signal.
Owner:OPTOPLAN

Arrangement and a method relating to phase locking

The present invention relates to an arrangement for phase locking of a Voltage Controlled Oscillator (VCO) to a selected frequency harmonic among a number of predetermined or available frequencies (harmonics), comprising a reference generator for generating a reference frequency, a phase lock loop (1; 101; 10, 4, 5, 6, 9) for producing an output signal in response to the input reference frequency, said phase lock loop comprising (enclosing) a phase detector (1), a loop filter (10), said VCO (5), adding means (4) and a power splitter (6). The arrangement also includes a sweep generator (9). It further comprises or is associated with storing means 82) for storing information about, for each selectable or available frequency harmonic, a first (coarse) control voltage providing a VCO frequency output which is lower/higher than, and differs from the selected frequency (harmonic) by a given value (Δf1). That the sweep generator (9) adds (superimposes) a controllable sweep voltage to/on the first control voltage at least until a varying, second frequency difference (Δfc) between the output VCO frequency and the selected frequency harmonic reaches a given value. Monitoring/detecting means are provided for detecting the varying, second frequency difference (Δfc) between the selected frequency harmonic and the VCO output frequency, and sweep generator control means are provided for reducing the sweep rate until the VCO is phase locked to the selected frequency harmonic.
Owner:HIGHBRIDGE PRINCIPAL STRATEGIES LLC AS COLLATERAL AGENT

Microwave vco direct modulation high linear frequency modulation signal generating circuit

ActiveCN104079269BSweep Linear Accuracy ImprovementReduce ranging errorPulse shapingIntermediate frequencyMicrowave oscillators
A microwave VCO directly modulates a high linear FM signal generating circuit proposed by the present invention, aiming to provide a frequency-modulation continuous-wave radar intermediate frequency with second-order or higher frequency sweep linear accuracy, unlimited sweep rate, and capable of suppressing cross-mixing A microwave chirp signal generation circuit for spurious signals. The present invention is realized through the following technical solutions: the monostable pulse shaping circuit shapes the input periodic pulse signal used to trigger the frequency sweep signal into a pulse signal with a pulse width equal to the frequency sweep time in one cycle, and generates nonlinearity through the C-R differential circuit Ramp down sawtooth voltage signal, superimposed on the DC bias voltage V 0 Above, a frequency-sweeping control voltage signal that compensates with the nonlinear tuning voltage-frequency characteristic of the microwave VCO (4) is formed to control the oscillation frequency of the microwave VCO to change linearly with time. The pulse signal generated by the shaping controls the microwave switch to gate the output of the microwave VCO, and suppresses the interference of the intermediate frequency stray signal generated by the close-range strong echo to the radar.
Owner:10TH RES INST OF CETC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products