Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2780 results about "Delay unit" patented technology

A time delay unit is a structure that provides a specific time delay, or programmable time delay, using a multi-path structure. It is similar to a phase shifter, but different. A phase shifter usually provides a fixed insertion phase difference between two states (flat phase over frequency).

Non-linear dynamic predictive device

A non-linear dynamic predictive device (60) is disclosed which operates either in a configuration mode or in one of three runtime modes: prediction mode, horizon mode, or reverse horizon mode. An external device controller (50) sets the mode and determines the data source and the frequency of data. In prediction mode, the input data are such as might be received from a distributed control system (DCS) (10) as found in a manufacturing process; the device controller ensures that a contiguous stream of data from the DCS is provided to the predictive device at a synchronous discrete base sample time. In prediction mode, the device controller operates the predictive device once per base sample time and receives the output from the predictive device through path (14). In horizon mode and reverse horizon mode, the device controller operates the predictive device additionally many times during base sample time interval. In horizon mode, additional data is provided through path (52). In reverse horizon mode data is passed in a reverse direction through the device, utilizing information stored during horizon mode, and returned to the device controller through path (66). In the forward modes, the data are passed to a series of preprocessing units (20) which convert each input variable (18) from engineering units to normalized units. Each preprocessing unit feeds a delay unit (22) that time-aligns the input to take into account dead time effects such as pipeline transport delay. The output of each delay unit is passed to a dynamic filter unit (24). Each dynamic filter unit internally utilizes one or more feedback paths that are essential for representing the dynamic information in the process. The filter units themselves are configured into loosely coupled subfilters which are automatically set up during the configuration mode and allow the capability of practical operator override of the automatic configuration settings. The outputs (28) of the dynamic filter units are passed to a non-linear analyzer (26) which outputs a value in normalized units. The output of the analyzer is passed to a post-processing unit (32) that converts the output to engineering units. This output represents a prediction of the output of the modeled process. In reverse horizon mode, a value of 1 is presented at the output of the predictive device and data is passed through the device in a reverse flow to produce a set of outputs (64) at the input of the predictive device. These are returned to the device controller through path (66). The purpose of the reverse horizon mode is to provide essential information for process control and optimization. The precise operation of the predictive device is configured by a set of parameters. that are determined during the configuration mode and stored in a storage device (30). The configuration mode makes use of one or more files of training data (48) collected from the DCS during standard operation of the process, or through structured plant testing. The predictive device is trained in four phases (40, 42, 44, and 46) correspo
Owner:ASPENTECH CORP

Electromagnetic control delay booster electric pressure cooker

InactiveCN106691171ASolve the problem of poor cooking effectEasy to solvePressure-cookersAtmospheric airControl delay
Disclosed is an electromagnetic control delay booster electric pressure cooker. A floater limited block is connected with an electromagnet, and the electromagnet drives the floater limited block to the position of the limiting floater or the releasing floater. At the position of the limited floater, the floater limited block blocks the floater, and limits the rising of the float, keeping expelling the steam in the cooker to the atmosphere through the vent hole of the floater; At the position of the releasing floater, the floater rises and falls freely; the line control institutions are provided with a delay control unit to control the electromagnet, and start the delay unit to control the work of the electromagnet in the specified delay time when the temperature of the temperature detector rises to the set delay startup time. The cooker has the advantages that: when the electric pressure cooker is cooking rice, the cooker releases partial steam insides after the rice boiling, and grain of rice in the cooker continues boiling in the condition of half a high-pressure, forcing the grain of rice absorb moisture quickly; close the outlet after reaching the set time, making the pressure in the cooker rises; shut off the power and keep heat to cook the rice. In this way, the rice grain is through core, chewiness and smooth when entering the mouth.
Owner:陆一铭

Suppression of radio frequency interference and impulse noise in communications channels

A noise suppression circuit for a communications channel (10) comprises a hybrid device (11) coupled to the channel for providing a differential output signal corresponding to a received signal. A delay unit (12) delays the differential signal by a suitable amount to allow for the generation and subtraction of a noise estimate. A summing device (13) extracts a digital common mode signal from the channel, and a noise estimation unit (16) provides a common mode noise estimate signal in dependence upon a history of the common mode signal over a predetermined period of time and over a plurality of frequency bands. The common mode noise estimate signal is combined subtractively (19) with the delayed differential signal to cancel common mode noise elements of the delayed differential signal. The noise estimation unit may comprise an analysis filter bank (20) for producing a plurality of subband signals (S1-SM), each at a different one of a plurality of different frequencies, a plurality of noise detection circuits (231-23M), each for processing a respective one of the plurality of subband signals to provide a component of the common mode noise estimate signal, and a synthesis filter bank (24) for processing the common mode noise signal components to provide the noise estimate signal.
Owner:BELL CANADA

Latency control circuit and method thereof and an auto-precharge control circuit and method thereof

InactiveUS7609584B2Decreasing routing complexity and circuit area and delayReduced footprintDigital storageMinimum timeMemory bank
A latency control circuit and method thereof and auto-precharge control circuit and method thereof are provided. The example latency control circuit may include a master unit activating at least one master signal based on a reference signal and an internal clock signal and a plurality of slave units receiving the at least one master signal, each of the plurality of slave units receiving a plurality of signals and outputting an output signal based at least in part upon one of the received plurality of signals. The example method of latency control may include receiving at least one master signal, the received at least one master signal activated based on a reference signal and an internal clock signal and receiving a plurality of signals and outputting an output signal based at least in part upon one of the received plurality of signals and latency information. The example auto-precharge control circuit may include a precharge command delay unit generating a plurality of first precharge command delay signals in response to an internal clock signal and a write auto-precharge command signal, at least one bank address delay unit outputting a delayed bank address signal and a precharge main signal generator outputting a precharge main signal to banks based on the delayed bank address signal. The method of performing a precharging operation with the auto-precharge control circuit may include delaying a bank address signal based on a minimum time interval between executed memory commands and outputting a precharge main signal to one or more memory banks based on the delayed bank address signal.
Owner:SAMSUNG ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products