Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

390 results about "Point-to-Point Protocol" patented technology

In computer networking, Point-to-Point Protocol (PPP) is a data link layer (layer 2) communications protocol between two routers directly without any host or any other networking in between. It can provide connection authentication, transmission encryption, and compression.

Enabling mobility for point to point protocol (PPP) users using a node that does not support mobility

Methods and apparatus for sending a registration request packet on behalf of a node that supports PPP but does not support Mobile IP is implemented in a Foreign Agent. The method comprises accepting a call from the node and receiving authentication information associated with a PPP authentication protocol from the node, the authentication information enabling a PPP node to be authenticated. From this authentication information, a PPP node profile is obtained. The PPP node profile includes registration information associated with the node that enables proxy registration to be performed by the Foreign Agent on behalf of the node, where the registration information associated with the node identifies a Home Agent associated with the node. The registration information may also include other information that may be pertinent to the composition of a registration request packet. A registration request packet including the registration information associated with the node is then composed and sent to the Home Agent on behalf of the node. The registration request packet that is sent by the Foreign Agent also may include a registration indicator indicating whether registration being performed by the Foreign Agent on behalf of the node is a re-registration by the Foreign Agent or an initial registration by the Foreign Agent. More particularly, in accordance with one embodiment, the registration request packet includes a sequence number indicating an order within a sequence of one or more registrations performed by one or more Foreign Agents on behalf of the node. From the sequence number, a Home Agent receiving the registration request packet may determine whether the Foreign Agent is performing a re-registration or an initial registration on behalf of the node.
Owner:CISCO TECH INC

Fault tolerant automatic protection switching for distributed routers

A working router is coupled to a SONET add-drop multiplexor (ADM) through a working line and a protection router is coupled to the ADM through a protection line. The routers are coupled to each other by a separate side-band connection and comprise a virtual router from the perspective of the neighboring router, which communicates with the virtual router over the SONET network using the Point-to-Point Protocol (PPP). The protection router transmits a heartbeat message to the working router over the side-band connection. If the protection router does not receive a response thereto, it initiates a line switch within the add-drop multiplexor. Once the line switch is complete, the protection router exchanges datagrams with the neighboring router, via the ADM and SONET ring to which the ADM is coupled. The protection router establishes a PPP connection between itself and the neighboring router device coupled to the SONET ring, utilizing the Link Control Protocol (LCP). The protection router includes a predetermined identifier value that identifies the originator of the request, in the LCP Identifier field of LCP request datagrams. The neighboring router includes the Identifier value received in a request datagram in the corresponding response datagram transmitted over the SONET ring to the ADM. Because datagrams received by the ADM from the SONET link are transmitted over both the working and the protect lines, the working router receives the same response as the protection router. Thus, by examining the identifier field, and recognizing the identifier value as that assigned to the protection router, the working router determines that the line switch to the protection router has occurred.
Owner:EXTREME NETWORKS INC

Method and system of providing multi-user access to a packet switched network

An approach for providing multi-user access to a packet switched network via a shared Ethernet-based local area network (LAN) is disclosed. Multiple end user stations are connected to the LAN, in which each of end user stations executes a communication software. The communication software is based upon a communication protocol (e.g., Point-to-Point Protocol (PPP)) that establishes a point-to-point communication session. The end user stations generate packets based upon the communication protocol. In addition, each of the end user stations selectively encapsulates the communication protocol packets using the Ethernet-based LAN protocol. Further, attached to the LAN is a customer premise equipment (CPE), which transmits the encapsulated packets to a line terminating equipment, which according to one embodiment is a digital subscriber line (DSL) access multiplexer that is located in a central office. The line terminating equipment transports the multiple PPP sessions to a multiplexer / demultiplexer, which is located within a regional carrier's network. In one embodiment, the multiplexer / demultiplexer is an Asynchronous Transfer Mode (ATM) switch, which simultaneously transports the multiple PPP sessions over a single permanent virtual circuit (PVC); VPI / VCIs (Virtual Path Identifier / Virtual Connection Identifier) are mapped to the multiple PPP sessions. The multiple PPP sessions are terminated at a remote access server, which recovers and forwards the packets to a backbone router. Thereafter, the backbone router forwards the packets to the packet switched network.
Owner:VERIZON PATENT & LICENSING INC

Method for estimating phase deviation in precise single-point positioning technology

The invention discloses a method for estimating a phase deviation in a precise single-point positioning technology, which comprises the steps of: firstly, carrying out parameter estimation on single-difference non-ionized layer combined ambiguity by using a position as a restraint condition according to data of a reference station in a tracking network; secondly, carrying out parameter estimationon single-difference wide-lane ambiguity by adopting an M-W combination, separating out a decimal part of the single-difference wide-lane ambiguity, and carrying out decimal deviation calculation by using a directional data statistic theory, modifying and fixing the single-difference wide-lane ambiguity as an integer; thirdly, resolving a single-difference L1 ambiguity floating point solution according to a single-difference non-ionized layer ambiguity estimation value and a single-difference wide-lane ambiguity integer solution, separating the decimal part, carrying out decimal deviation calculation by using the direction data statistic theory; and finally, broadcasting the wide-lane and the L1 phase deviation decimal part to a user of a roving station so as to be used for fixing the single-difference integral ambiguity solution of the wide lane and the L1 and further obtaining a PPP (Point to Point Protocol) static solution.
Owner:SOUTHEAST UNIV

Radio link protocol (RLP)/point-to-point protocol (PPP) design that passes corrupted data and error location information among layers in a wireless data transmission protocol

InactiveUS7031257B1Reduces or avoids unnecessary packet discardingImprove performanceError preventionTransmission systemsPoint-to-Point ProtocolError location
A radio link protocol (RLP) / point-to-point protocol (PPP) design is disclosed for wireless multimedia packet networks that passes corrupted packet data and error location information among OSI layers. The RLP layer provides erasure data frames and optionally error location indicators to the PPP layer. When the PPP layer has access to the erasure data frames, the data frames can be padded with a predefined value, such as all zeroes “0” to prevent error propagation from one data frame (or octet) to the following data frames (or octets). When the PPP layer has access to the error location information, the PPP layer can detect if the PPP packet header is corrupted. When a valid header is detected, the PPP layer forwards the packet payload to the higher layers (TCP, UDP) whether or not the payload is properly received. Thus, the application has access to all the usable information, so the application can determine whether and how to utilize the information. The RLP / PPP design of the present invention allows packets with partially corrupted payloads to still be forwarded to the UDP layer and then to the application layer.
Owner:ALCATEL-LUCENT USA INC +1

Mobile IP registration in selected inter-PDSN dormant hand-off cases in a CDMA2000-based cellular telecommunications network

In a cellular telecommunications network, a method and system for performing dormant hand-off for a dormant Mobile Node (MN) between a source packet zone an a target packet zone, when the MN still has an active A10 and Point-to Point Protocol (PPP) connection in the target packet zone. According to the method, when handed-off, the MN issues an origination request with a Data Ready to Sent (DRS) parameter set to zero for the target Base Station Controller (BSC-T) which responsive to the request further sends an A9-setup-A8 registration request to a target Packet Control Function (PCF-T). The PCF-T then sends an A-11 Registration Request message to a Packet Data Service Node (PDSN-T) of the target packet zone. Responsive to the receipt of the Registration request, the PDSN-T sends an agent advertisement message to the MN and initiates the Mobile IP (MIP) registration procedure, and the MN can register the care-of-address information relating to the new serving PDSN, the PDSN-T, with its Home Agent (HA). According to another embodiment, the same method is to be used for performing a hand-off of the dormant MN to the target packet zone, when the MN, before issuing the origination request, demands the activation of a packet data session.
Owner:TELEFON AB LM ERICSSON (PUBL)
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products