Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

210 results about "Internal time" patented technology

Internal Time is an accessible, up-to-date overview of a subject that is important to all of us. With its remarkable depth and breadth of coverage, this book should be of interest to a wide and diverse audience.

Satellite (GPS) assisted clock apparatus, circuits, systems and processes for cellular terminals on asynchronous networks

A wireless circuit (1100, 1190) for tracking an incoming signal and for use in a network (2000) having handover from one part (Cell A) of the network to another part (Cell B). The wireless circuit includes a processor (CE 1100) responsive to the incoming signal, the processor (CE 1100) operable to generate pulse edges representing network-based receiver synchronization instances (RSIs), and a timekeeping circuitry (2420, 2430, 2450) including an oscillator circuitry (2162), the timekeeping circuitry (2420, 2430) operable to maintain a set of counter circuitries (2422-2428) including a counter circuitry (2422) operable to maintain at least one network time component based on the RSIs and another counter circuitry (2428) operable at least during handover and during loss of network coverage for maintaining at least one internal time component (NC) based on the oscillator circuitry (2162), the set of counter circuitries (2422-2428) operable to account for elapsing time substantially gaplessly and substantially without overlap between the time components during a composite of network coverage, loss of network coverage and handover, and the timekeeping circuitry further including a time generator (2450) for combining the time components from the set of counter circuitries (2422-2428) to generate an approximate absolute time (SGTB). Other electronic circuits, positioning systems, methods of operation, and processes of manufacture are also disclosed and claimed.
Owner:TEXAS INSTR INC

Satellite (GPS) assisted clock apparatus, circuits, systems and processes for cellular terminals on asynchronous networks

A wireless circuit (1100, 1190) for tracking an incoming signal and for use in a network (2000) having handover from one part (Cell A) of the network to another part (Cell B). The wireless circuit includes a processor (CE 1100) responsive to the incoming signal, the processor (CE 1100) operable to generate pulse edges representing network-based receiver synchronization instances (RSIs), and a timekeeping circuitry (2420, 2430, 2450) including an oscillator circuitry (2162), the timekeeping circuitry (2420, 2430) operable to maintain a set of counter circuitries (2422-2428) including a counter circuitry (2422) operable to maintain at least one network time component based on the RSIs and another counter circuitry (2428) operable at least during handover and during loss of network coverage for maintaining at least one internal time component (NC) based on the oscillator circuitry (2162), the set of counter circuitries (2422-2428) operable to account for elapsing time substantially gaplessly and substantially without overlap between the time components during a composite of network coverage, loss of network coverage and handover, and the timekeeping circuitry further including a time generator (2450) for combining the time components from the set of counter circuitries (2422-2428) to generate an approximate absolute time (SGTB). Other electronic circuits, positioning systems, methods of operation, and processes of manufacture are also disclosed and claimed.
Owner:TEXAS INSTR INC

Electronic timepiece and control method for an electronic timepiece

An electronic timepiece includes a reception unit that receives satellite signals transmitted from positioning information satellites; a time information generating unit that generates an internal time; a manual reception process unit that starts operation of the reception unit and executes a manual reception process when an external operating member is operated; an automatic reception process unit that automatically operates the reception unit and executes an automatic reception process when a predetermined condition is satisfied; a simple time adjustment process unit that executes a simple time adjustment process to receive a satellite signal from one positioning information satellite by means of the reception unit, acquire time information from the received satellite signal, and adjust the internal time; and a high precision time adjustment process unit that executes a high precision time adjustment process to receive satellite signals from a plurality of positioning information satellites by means of the reception unit, acquire time information and positioning information from the received satellite signals and determine the location, and adjust the internal time to the time acquired based on the positioning result. The automatic reception process unit executes the simple time adjustment process by means of the simple time adjustment process unit when the automatic reception process executes, and the high precision time adjustment process unit executes the high precision time adjustment process only when the manual reception process is executed by the manual reception process unit.
Owner:SEIKO EPSON CORP

Time Adjustment Device, Timepiece with a Time Adjustment Device, and a Time Adjustment Method

A time adjustment device having a reception unit that receives satellite signals transmitted from positioning information satellites; a time information generating unit that generates internal time information; a time information adjustment component that corrects the internal time information; and a reception controller that controls operation of the reception unit; wherein the satellite signal contains satellite time information that is kept by the positioning information satellite; the reception unit can select a first reception mode for receiving first information including the hour, minute, and second data in the satellite signal, and a second reception mode for receiving second information including the hour, minute, and second data, week information for the current year, month, and day, and satellite health information in the satellite signal; the time information adjustment component includes a time adjustment recording component that records whether or not the time was adjusted using the second information received in the second reception mode after the internal time information was initialized, a first time information adjustment component that controls the reception unit by way of the reception controller in the first reception mode to receive the first information, and sets the hour, minute, and second values of the internal time information based on the received first information, and a second time information adjustment component that controls the reception unit in the second reception mode to receive the second information, and sets the year, month, day, hour, minute, and second values of the internal time information using the received second information; the first time information adjustment component operates when it is recorded in the time adjustment recording component that the time was adjusted using the second information; and the second time information adjustment component operates when it is not recorded in the time adjustment recording component that the time was adjusted using the second information.
Owner:SEIKO EPSON CORP

Electronic Timepiece and Control Method for an Electronic Timepiece

An electronic timepiece includes a reception unit that receives satellite signals transmitted from positioning information satellites; a time information generating unit that generates an internal time; a manual reception process unit that starts operation of the reception unit and executes a manual reception process when an external operating member is operated; an automatic reception process unit that automatically operates the reception unit and executes an automatic reception process when a predetermined condition is satisfied; a simple time adjustment process unit that executes a simple time adjustment process to receive a satellite signal from one positioning information satellite by means of the reception unit, acquire time information from the received satellite signal, and adjust the internal time; and a high precision time adjustment process unit that executes a high precision time adjustment process to receive satellite signals from a plurality of positioning information satellites by means of the reception unit, acquire time information and positioning information from the received satellite signals and determine the location, and adjust the internal time to the time acquired based on the positioning result. The automatic reception process unit executes the simple time adjustment process by means of the simple time adjustment process unit when the automatic reception process executes, and the high precision time adjustment process unit executes the high precision time adjustment process only when the manual reception process is executed by the manual reception process unit.
Owner:SEIKO EPSON CORP

Radio-controlled timepiece and method of adjusting the time kept by a radio-controlled timepiece

A radio-controlled timepiece can adjust the time with a short reception process while also reducing the likelihood of incorrect adjustment. The radio-controlled timepiece has a reception control means 31, time information updating means 32, time adjustment storage means 33, and time display means. The reception control means 31 has a simple time adjustment means 330 that is driven within a predetermined time of the last successful signal reception, and a normal time adjustment means 320 that is driven when this predetermined time has passed. The simple time adjustment means 330 has a pulse timing detection unit 331, a offset calculation unit 332, a offset evaluation unit 333, and a seconds information adjustment unit 334. The pulse timing detection unit 331 detects the reference timing, which is the timing of the rising edge or falling edge of rectangular wave pulses in the received time code. The offset calculation unit 332 calculates the difference between this reference timing and the timing of the seconds unit in the internally kept time. The offset evaluation unit 333 determines if this offset is within a tolerance range. The seconds information adjustment unit 334 adjusts the seconds unit of the internal time based on the offset if the offset is within the tolerance range.
Owner:SEIKO EPSON CORP

Time adjustment device, timepiece with a time adjustment device, and a time adjustment method

A time adjustment device having a reception unit that receives satellite signals transmitted from positioning information satellites; a time information generating unit that generates internal time information; a time information adjustment component that corrects the internal time information; and a reception controller that controls operation of the reception unit; wherein the satellite signal contains satellite time information that is kept by the positioning information satellite; the reception unit can select a first reception mode for receiving first information including the hour, minute, and second data in the satellite signal, and a second reception mode for receiving second information including the hour, minute, and second data, week information for the current year, month, and day, and satellite health information in the satellite signal; the time information adjustment component includes a time adjustment recording component that records whether or not the time was adjusted using the second information received in the second reception mode after the internal time information was initialized, a first time information adjustment component that controls the reception unit by way of the reception controller in the first reception mode to receive the first information, and sets the hour, minute, and second values of the internal time information based on the received first information, and a second time information adjustment component that controls the reception unit in the second reception mode to receive the second information, and sets the year, month, day, hour, minute, and second values of the internal time information using the received second information; the first time information adjustment component operates when it is recorded in the time adjustment recording component that the time was adjusted using the second information; and the second time information adjustment component operates when it is not recorded in the time adjustment recording component that the time was adjusted using the second information.
Owner:SEIKO EPSON CORP

Electronic Timepiece and Time Difference Correction Method for an Electronic Timepiece

An electronic timepiece has a function for receiving satellite signals transmitted from positioning information satellites, and includes a reception unit that receives the satellite signal and acquires satellite information from the received satellite signal, a satellite search unit that executes a process of searching for a capturable positioning information satellite based on the received satellite signal and capturing the found satellite signal, a positioning calculation unit that selects a specific number of positioning information satellites from among the positioning information satellites captured by the satellite search unit, executes a positioning calculation based on the satellite information contained in the satellite signals sent from the selected positioning information satellites, and generates positioning information, a time information adjustment unit that corrects internal time information based on the satellite information, a time information display unit that displays the internal time information, a storage unit that stores time difference information defining the time difference in each of a plurality of areas into which geographical information is divided, and a time difference evaluation unit that calculates an assumed positioning region based on the positioning information, and determines based on the time difference information if the assumed positioning region contains a time difference boundary. The time information adjustment unit correcting the internal time information based on the time difference in the assumed positioning region when the time difference evaluation unit determines that the assumed positioning region does not contain a time difference boundary, The positioning calculation unit reselecting the specific number of positioning information satellites and continuing the positioning calculation when the time difference evaluation unit determines that the assumed positioning region contains a time difference boundary. The reception unit terminates satellite signal reception when the time difference evaluation unit determines that the assumed positioning region does not contain a time difference boundary.
Owner:SEIKO EPSON CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products