Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

74results about How to "More confidence" patented technology

Method for Training Neural Networks

The present invention provides a method (30) for training an artificial neural network (NN). The method (30) includes the steps of: initialising the NN by selecting an output of the NN to be trained and connecting an output neuron of the NN to input neuron(s) in an input layer of the NN for the selected output; preparing a data set to be learnt by the NN; and, applying the prepared data set to the NN to be learnt by applying an input vector of the prepared data set to the first hidden layer of the NN, or the output layer of the NN if the NN has no hidden layer(s), and determining whether at least one neuron for the selected output in each layer of the NN can learn to produce the associated output for the input vector. If none of the neurons in a layer of the NN can learn to produce the associated output for the input vector, then a new neuron is added to that layer to learn the associated output which could not be learnt by any other neuron in that layer. The new neuron has its output connected to all neurons in next layer that are relevant to the output being trained. If an output neuron cannot learn the input vector, then another neuron is added to the same layer as the current output neuron and all inputs are connected directly to it. This neuron learns the input the old output could not learn. An additional neuron is added to the next layer. The inputs to this neuron are the old output of the NN, and the newly added neuron to that layer.
Owner:GARNER BERNADETTE

Telecommunication method for securely exchanging data

The invention provides for a telecommunication method of securely exchanging unencrypted data between a telecommunications device and a first server computer system via a digital cellular wireless telecommunications network, wherein the telecommunications device is a battery powered mobile end user telecommunications device, wherein the method comprises the steps of: encrypting the unencrypted data using a first encryption algorithm into first encrypted data, sending the first encrypted data to a second server computer system via a first network connection of the digital cellular wireless telecommunications network, storing the first encrypted data by the second server computer system, sending an order request to the first server computer system via a second network connection of the digital cellular wireless telecommunications network by the telecommunications device, sending a data publishing request to the second server computer system, generating a cryptographic key pair, sending the first encrypted data, the public key, and the private key to the telecommunications device, decrypting the first encrypted data into the unencrypted data, encrypting the unencrypted data into second encrypted data using the public key, sending the second encrypted data to the second, generating a web service for providing the second encrypted data via an URL, sending the URL to the telecommunications device, sending the URL and the private key, requesting the second encrypted data from the second server computer system, sending the second encrypted data to the first server computer system by the second server computer system using the wired network connection, decrypting the second encrypted data by the first server computer system into the unencrypted data, and combining the order request with the unencrypted data.
Owner:SAP AG

Detection and determination of the stages of coronary artery disease

A method having clinically sufficient degree of diagnostic accuracy for detecting the presence of coronary artery disease in a human patient from the general population and for distinguishing between the stages of the disease in that patient is disclosed. The stages are, first, the non-acute stage, which is either asymptomatic coronary artery disease or stable angina, second, the acute stage known as unstable angina, and, third, the acute stage known as acute myocardial infarction. The diseased state (as opposed to the non-diseased state) is indicated by the clinically significant presence of a first marker in a sample from the patient. The presence of one of the two acute stages, unstable angina or acute myocardial infarction, is indicated by the clinically significant presence of a second marker in a sample from the patient. The presence of the more severe acute stage known as acute myocardial infarction is indicated by the clinically significant presence of a third marker in a sample from the patient. Preferably the first marker comprises OxLDL, the second marker comprises MDA-modified LDL, and the third marker is a troponin. Preferably the OxLDL and MDA-modified LDL are detected using monoclonal antibodies that can detect the presence of those markers in undiluted human plasma at concentrations as low as 0.02 milligrams/deciliter.
Owner:LEUVEN RES & DEV VZW
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products