Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

787 results about "Silicon oxygen" patented technology

Silicon therefore can readily form compounds with oxygen where it takes the position of carbon. The electrons in silicon's 3p orbital can combine with the four electrons in oxygen's 2p orbital to complete a molecular orbital with 6 delocalized electrons.

Process for the formation of polyhedral oligomeric silsesquioxanes

Three processes for the manufacture of polyhedral oligomeric silsesquioxanes (POSS) which utilize the action of bases that are capable of either attacking silicon or any compound that can react with a protic solvent (e.g. ROH, H2O etc.) and generate hydroxide [OH]−, alkoxide [RO]−′, etc. The first process utilizes such bases to effectively redistribute the silicon-oxygen frameworks in polymeric silsesquioxanes [RSiO1.5]28 where ∞=1-1,000,000 or higher into POSS nanostructures of formulas [(RSiO1.5)nΣ#, homoleptic, [(RXSiO1.5)n]Σ#, functionalized homoleptic, [(RSiO1.5)m(R′SiO1.5)n]Σ#, heteroleptic, and {(RSiO1.5)m(RXSiO1.0)n}Σ#, functionalized heteroleptic nanostructures. The second process utilizes base to aid in the formation of POSS nanostructures of formulas [(RSiO1.5)n]Σ# homoleptic and [(RSiO1.5)m(R′SiO1.5)n]Σ# heteroleptic and [(RSiO1.5)m(RXSiO1.0)n]Σ# functionalized heteroleptic nanostructures from silanes RSiX3 and linear or cyclic silsesquioxanes of the formula RX2Si—(OSiRX)m—OSiRX2 where m=0-10, X=OH, Cl, Br, I, alkoxide OR, acetate OOCR, peroxide OOR, amine NR2, isocyanate NCO, and R. The third process utilizes base to selectively ring-open the silicon-oxygen-silicon (Si—O—Si) bonds in POSS structures to form POSS species with incompletely condensed nanostructures. These processes also afford stereochemical control over X. The three processes result in new POSS species that can undergo additional chemical manipulations to ultimately be converted into POSS-species suitable for polymerization, grafting, or other desirable chemical reactions.
Owner:HYBRID PLASTICS INC

Silicon-oxygen composite negative electrode material and manufacturing method thereof

The invention discloses a silicon-oxygen composite negative electrode material which is used for manufacturing a negative electrode of a lithium battery; the negative electrode material comprises an inner core, a coating layer and a middle layer, wherein the coating layer wraps the inner core, and the middle layer is positioned between the inner core and the coating layer, wherein the middle layercomprises non-lithium silicate, and the non-lithium silicate refers to non-lithium silicate, wherein the mass content of the non-lithium silicate in the middle layer is gradually decreased from the middle layer to the inner core. The decrementing comprises a gradient reduction from the middle layer to the inner core, and the gradient reduction refers to the fact that the mass-duty ratios on the circumference parts which have the same central distance from the inner core are the same, and when the distance from the center of the inner core is reduced, the mass-duty ratio is reduced step by step. The non-lithium silicate is generated in situ on the outer layer of the inner core, and has a non-water-soluble or non-alkaline or weakly alkaline compact structure, so that the dissolution of theinternal water-soluble lithium silicate can be effectively relieved; and the pH value of the ghost-eye composite negative electrode material can be lowered.
Owner:HUAWEI TECH CO LTD

Preparation method capable of realizing chemical blending of modified nano silicon dioxide particles in acrylate monomer

A preparation method capable of realizing chemical blending of modified nano silicon dioxide particles in an acrylate monomer relates to the field of the application of uniform dispersity of acryloyl oxygen radical contained silane couplint agent modified nano silicon dioxide particles in the acrylate monomer and the application of photocuring products in coating material. According to the method, the modified silicon dioxide is formed in a way that alkoxy on silane couplint agent and hydroxy on the surfaces of the nano silicon dioxide particles are reacted to form firm silicon-oxygen-silicon bonds; the double-bond silane couplint agent modified nano silicon dioxide is mixed in the monomer; during the photopolymerization process of the product, the acryloyl oxygen radical contained silane couplint agent modified nano silicon dioxide and the monomer are polymerized through the chemical bonds, so as to allow the nano silicon dioxide to be more uniformly distributed in the polymer; and the acryloyl oxygen radical contained silane couplint agent modified nano silicon dioxide particles are subjected to laser size analysis and transmission electron microscopy. The purpose of improving the application of the nano silicon dioxide composite acrylate monomer in the coating material field is achieved.
Owner:BEIJING UNIV OF CHEM TECH

Novel electronic-grade polyimide film with low linear expansion coefficient and production method thereof

ActiveCN103524768AGood adhesionGood coefficient of linear expansionFiltrationSilicon oxygen
The invention relates to a preparation method of an electronic-grade polyimide film with low linear expansion coefficient. The method comprises the following steps that (1) the step-by-step condensation polymerization technology is used for obtaining polybasic block copolymerization polyamide acid glue solutions comprising one or more bar-shaped rigid chain sections containing para-benzene or biphenyl and one or more soft chain sections containing ether bonds or silicon-oxygen bonds and the like; (2) polyamide acid comprising one or more bar-shaped rigid chain structures containing para-benzene or biphenyl and polyamide acid comprising one or more soft chain structures containing ether bonds or silicon-oxygen bonds are independently compounded, and the two or more polyamide acid glue solutions different in rigidity and softness are mixed and compounded; (3) the compounded glue solutions are subjected to filtration, vacuum defoamation, casting filming, bidirectional stretching, chemical amidization or thermal amidization, infrared complete amidization, high-temperature thermal forming processing, corona processing and a reeling process, and therefore the electronic-grade polyimide film with the thickness being 7.5-125 micrometers, the linear expansion coefficient being 5-18ppm / DEG C, and good physical mechanical performance is obtained.
Owner:宏威高新材料有限公司 +1

Silicon/silicon oxycarbide/graphite composite negative electrode material

The invention relates to a silicon / silicon oxycarbide / graphite composite negative electrode material which is a silicon-containing material which has the size being lower than 3 microns uniformly and is firmly distributed on the surface of a negative electrode of graphite. The invention further provides a preparation method of the composite negative electrode material. The preparation method comprises the steps of dispersing a silicon-containing material in a liquid organo-siloxane monomer, sequentially adding an acid liquid of alcohol and water, a curing agent and a graphite negative electrode material, then carrying out ball milling or mechanical stirring, pinching and mixing to obtain a paste-type mixture; calcining the paste-type mixture at high temperature under a protective atmosphere, crushing and sieving to obtain different-particle-size silicon / silicon oxycarbide / graphite lithium-ion battery negative electrode material. The silicon-containing materials of the silicon / silicon-oxygen carbon / graphite composite negative electrode material are firmly and uniformly distributed on the surface of a graphite material; due to the structure, the silicon-containing materials can be effectively adsorbed on the surface of the graphite, the self agglomeration of the silicon-containing material can be avoided and the silicon-containing material is prevented from peeling off from the graphite; the silicon / silicon oxycarbide / graphite composite negative electrode material has the characteristics that the charge and discharge specific capacities are adjustable, and the electrochemical cycle stability is high.
Owner:CHINA AUTOMOTIVE BATTERY RES INST CO LTD

Multistage nano-reactor catalyst for direct preparation of aromatic compounds from synthetic gas, and preparation method and application thereof

The invention discloses a multistage nano-reactor catalyst for one-step direct preparation of aromatic hydrocarbons from synthetic gas, and a preparation method and an application thereof. The catalyst comprises a core layer iron-based Fischer-Tropsch catalyst, a porous oxide or porous carbon material transition layer and a molecular sieve shell layer having an aromatization function, wherein the shell layer molecular sieve can be further modified with a metal element or a nonmetal element, and the external surface of the molecular sieve is further modified with a silicon-oxygen compound to adjust the acidic site of the external surface and the aperture of the molecular sieve in order to inhibit the formation of heavy aromatic hydrocarbons. The preparation method of the multistage nano-reactor catalyst is characterized in that the transition shell layer can be prepared from the Fischer-Tropsch catalyst through multiple steps, the shell layer contains or does not contain an assistant, and the shell layer molecular sieve undergoes or does not undergo surface modification. The catalyst can be used for the direct preparation of the aromatic compounds, especially lightweight aromatic hydrocarbons, from the synthetic gas; the selectivity of the lightweight aromatic hydrocarbons in the hydrocarbons can reach 75% or more, and the content of the aromatic hydrocarbons aromatic hydrocarbons in a liquid phase product is not less than 95%; and the catalyst has a good stability and has a very good industrial application prospect.
Owner:JIANGNAN UNIV

Silicon oxide-based silicon-oxygen-carbon composite material and preparation method and application thereof

The invention discloses a silicon oxide-based silicon-oxygen-carbon composite material, which is of a three-layer structure comprising an inner layer, an intermediate layer and an outer layer, wherein the inner layer is an SiOx substrate; the intermediate layer is a carbon coating layer; the outer layer is graphite; the SiOx substrate has the characteristics consistent with SiO or a compound of Si and SiOx in the crystal structure characteristic; the value range of x is greater than 0 and smaller than 2; the SiOx substrate is of a powdery structure; the average grain diameter of the SiOx substrate is 2.0-5.0 microns; and the SiOx substrate is prepared through technical details of Si and SiO2 high-temperature reaction, sublimation and condensation. The silicon oxide-based silicon-oxygen-carbon composite material has the most obvious characteristics that added polyethylene powder is decomposed to form small pores in a high-temperature pyrolysis carbon coating process; and meanwhile, the decomposed product and introduced carbon source gas can be cracked to form a carbon coating layer, so that the carbon coating efficiency and thickness are improved. Active material particles obtained by the method are controllable in size, good in conductivity and stable in structure; and the silicon-oxygen-carbon composite material has high reversible capacity and excellent cycling stability when used as a negative electrode of a lithium-ion battery.
Owner:ZHONGTIAN ENERGY STORAGE TECH

Heat radiation material, heat radiation structure, and preparation method thereof

The invention provides a heat radiation material, a heat radiation structure, and preparation methods thereof. The heat radiation material comprises, by weight, 10-30 parts of inorganic heat radiation nano-grade material aqueous slurry, 40-80 parts of aqueous high-molecular resin, 0.5-5 parts of an auxiliary agent, and 5-20 parts of a diluting agent. The inorganic heat radiation nano-grade material aqueous slurry comprises, by weight, 10-25 parts of an inorganic heat radiation nano-grade material, 0.5-20 parts of a bi-functional large-molecular modifier, and 50-100 parts of a solvent. According to the inorganic heat radiation nano-grade material, the bi-functional large-molecular modifier is used in surface modification. Selective absorption and grafting hybridization reaction are carried out on the surface of the inorganic heat radiation nano-grade material, such that coordination self-assembly behaviors of ester bond, silicon-oxygen bond, hydrogen bond, and the like are formed on the surface of the material. Therefore, inorganic heat radiation nano-grade material interface performance is controlled, compatibility and system dispersion stability of the inorganic heat radiation nano-grade material are improved, and better heat radiation performance can be obtained.
Owner:REGAL PAPER TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products