Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

445 results about "Hybridization reaction" patented technology

Encoded solid supports for biological processing and assays using same

Combinations, called matrices with memories, of matrix materials with remotely addressable or remotely programmable recording devices that contain at least one data storage unit are provided. The matrix materials are those that are used in as supports in solid phase chemical and biochemical syntheses, immunoassays and hybridization reactions. The matrix materials may additionally include fluophors or other luminescent moieties to produce luminescing matrices with memories. The data storage units are non-volatile antifuse memories or volatile memories, such as EEPROMS, DRAMS or flash memory. By virtue of this combination, molecules and biological particles, such as phage and viral particles and cells, that are in proximity or in physical contact with the matrix combination can be labeled by programming the memory with identifying information and can be identified by retrieving the stored information. Combinations of matrix materials, memories, and linked molecules and biological materials are also provided. The combinations have a multiplicity of applications, including combinatorial chemistry, isolation and purification of target macromolecules, capture and detection of macromolecules for analytical purposes, selective removal of contaminants, enzymatic catalysis, cell sorting, drug delivery, chemical modification and other uses. Methods for electronically tagging molecules, biological particles and matrix support materials, immunoassays, receptor binding assays, scintillation proximity assays, non-radioactive proximity assays, and other methods are also provided.
Owner:IRORI TECH

Method for carbon fiber surface modification of plasma coated with nano colloidal sols by plasma treatment

The invention relates to a method for modifying the surface of carbon fiber coated with nano sol through plasma treatment, which comprises the following steps: firstly, nano particles are prepared into an organic solvent, a sol solution of water or a sol solution prepared by hybridization reaction of a precursor solution of organic-inorganic nano particles by the ultrasonic vibrating technology; secondly, the sol solution is coated on the surface of the carbon fiber, treated by means of spray coating and padding, and dried; and thirdly, the dried carbon fiber is placed on a special transport unit for plasma processing equipment and a plasma is sprayed on the surface of the carbon fiber to make the carbon fiber move in the plasma atmosphere, so as to generate surface modification, wherein the treating power is between 10 and , watts, and the treatment time is between 0.5 and 300 seconds. The method can effectively improve the performance of the fiber, improves the molded manufacturability and the overall properties of composite materials of the fiber, has simple technology, quick processing speed, good treatment effect and low cost, is convenient to operate and difficult to cause environmental pollution, can reduce energy consumption, and is suitable for industrial production.
Owner:DONGHUA UNIV +1

Information processing apparatus, information processing method, storage medium and program

InactiveUS20050164217A1Determine biological species easily, inexpensivelyShort timeMicrobiological testing/measurementBiological testingInformation processingHybridization reaction
Biological species are determined easily, inexpensively, in a short time, and accurately even if a plurality biological species having base sequences similar to one another exist in a specimen. For achieving such an object, the information processing apparatus according to the present invention is an information processing apparatus processing information about the signal intensity of each probe obtained as a result of making a predetermined specimen undergo a hybridization reaction using a DNA micro-array in which probes being nucleic acid complementary to some of nucleotide sequences of biological species, the information processing apparatus comprising unit configured to retain a known sample, unit configured to acquire an unknown sample obtained as a result of making the predetermined specimen undergo the hybridization reaction, unit configured extract a vector related to a vector related to a predetermined biological species, of the known sample and unknown sample, and determining unit configured to compare the extracted vector of the known sample with the vector of the unknown sample to determine whether or not the predetermined biological species is contained in the predetermined specimen.
Owner:CANON KK

Method for carbon fiber surface modification of plasma coated with silicon dioxide by plasma treatment

The invention relates to a method for modifying the surface of carbon fiber coated with nano dioxide sol through plasma treatment, which comprises the following steps: firstly, nano silicon dioxide is prepared into an organic solvent, a sol solution of water or a sol solution prepared by hybridization reaction of a precursor solution of organic-inorganic nano particles and silicon dioxide nano particles by the ultrasonic vibrating technology; secondly, the sol solution is coated on the surface of the carbon fiber, treated by means of spray coating or padding and so on, and dried; and thirdly, the carbon fiber is placed on a plasma transport unit and a plasma is sprayed on the surface of the carbon fiber to generate modification, wherein the treating power is between 10 and 15,000 watts, and the treatment time is between 0.5 and 300 seconds. The method can effectively improve the performance of the carbon fiber, improves the molded manufacturability and the overall properties of composite materials of the carbon fiber, has simple technology, quick processing speed, good treatment effect and low cost, is convenient to operate and difficult to cause environmental pollution, can reduce energy consumption, and is suitable for industrial production.
Owner:DONGHUA UNIV +1

Heat radiation material, heat radiation structure, and preparation method thereof

The invention provides a heat radiation material, a heat radiation structure, and preparation methods thereof. The heat radiation material comprises, by weight, 10-30 parts of inorganic heat radiation nano-grade material aqueous slurry, 40-80 parts of aqueous high-molecular resin, 0.5-5 parts of an auxiliary agent, and 5-20 parts of a diluting agent. The inorganic heat radiation nano-grade material aqueous slurry comprises, by weight, 10-25 parts of an inorganic heat radiation nano-grade material, 0.5-20 parts of a bi-functional large-molecular modifier, and 50-100 parts of a solvent. According to the inorganic heat radiation nano-grade material, the bi-functional large-molecular modifier is used in surface modification. Selective absorption and grafting hybridization reaction are carried out on the surface of the inorganic heat radiation nano-grade material, such that coordination self-assembly behaviors of ester bond, silicon-oxygen bond, hydrogen bond, and the like are formed on the surface of the material. Therefore, inorganic heat radiation nano-grade material interface performance is controlled, compatibility and system dispersion stability of the inorganic heat radiation nano-grade material are improved, and better heat radiation performance can be obtained.
Owner:REGAL PAPER TECH

Preparation method for high-hardness waterborne polyurethane dispersion

The invention discloses a preparation method for high-hardness waterborne polyurethane dispersion. An inorganic nano material and waterborne polyurethane are grafted through an in-situ polymerization method, so that the hybridization reaction of inorganic materials and the organic materials is realized and complementary advantages are realized. The preparation method comprises the following operation steps: adding polyisocyanate, macromolecule polyol, a catalyst, a chain extender and a silane coupling agent according to certain weight ratio in a flask for reacting to obtain a polyurethane prepolymer; after the reaction is ended, sequentially adding a neutralizer, inorganic nano material dispersion liquid and deionized water under the condition of low-temperature and high-speed stirring; finally, heating under the vacuum condition for removing the solvent to obtain the high-hardness waterborne polyurethane dispersion. Compared with the traditional inorganic and organic blending process, the preparation method has the characteristics that products prepared through the preparation method have the advantages of good stability, excellent water resistance, long-time aging resistance, excellent and high adhesion, high drying speed, high hardness, good fullness, higher light transmittance and the like, and are wide in application range.
Owner:江苏日出化工有限公司

Inorganic heat-insulation nano material aqueous slurry, building glass heat-insulation coating and preparation method

The invention provides a coating for building glass heat insulation which can release negative ions and a preparation method; the coating comprises inorganic heat-insulation nano material, siloxane polymer, inorganic heat-insulation nano material aqueous slurry of solvent, negative ion powder material aqueous slurry, aqueous resin, assistant and diluent; the inorganic heat-insulation nano material adopts siloxane polymer with discrete and exquisite structure as a template, selective adsorption and grafting hybridization reaction are carried out on the surface of the inorganic heat-insulation nano material, silicon-oxygen bond and hydrogen bond coordination self-assembly action is formed on the surface of the heat-insulation nano material to control the interface performance of the heat-insulation nano material, improve the compatibility and the system dispersion stability among the heat-insulation nano materials and obtain special optical and heat-insulation performances; in addition, the synergistic effect among the negative ion material, the inorganic heat-insulation nano material and the aqueous resin can improve the heat-insulation effect and the capacity of releasing the negative ions, so as to realize multi-functionalization of the building glass heat-insulation coating.
Owner:RESEARCH INSTITUTE OF TSINGHUA UNIVERSITY IN SHENZHEN

Visualization method for rapidly detecting trace amount of uranyl ions in water environment

The invention belongs to the field of detecting a trace amount of ions in the water environment, and particularly relates to a visualization method for rapidly detecting a trace amount of uranyl ions in the water environment. The method mainly includes the steps that DNAzyme with the specific recognition function on UO2 <2+> is fixed to the surfaces of magnetic beads, and horse radish peroxidase is preassembled on the surface of nano-gold; then the magnetic beads are connected with the nano-gold through the cutting effect of the UO2<2+> on the DNAzyme and the hybridization reaction of DNA, after separation and collection are carried out through an external magnetic field, H2O2 oxidation tetramethyl benzidine is efficiently catalyzed through the horse radish peroxidase to enable a solution to be changed from the blank to the blue, and therefore sensitive and specific visualization rapid detection of the UO2<2+> ions is achieved. As the method has the advantages of being high in sensitivity, high in specificity, high in matrix interference resistance, simple, rapid, low in cost and the like, the method can be used for site rapid visualization detection of the trace amount of UO2<2+> ions in various water samples.
Owner:FUZHOU UNIV

Single-wall carbon nano tube-based ultrasensitive deoxyribonucleic acid (DNA) biosensor and preparation method and application thereof

The invention provides a single-wall carbon nano tube-based ultrasensitive deoxyribonucleic acid (DNA) biosensor and a preparation method and application thereof. In the method, single-wall carbon nano tubes (SWCNTs) are grown on the surface of a silicon wafer on site by a chemical vapor deposition method, and gold nano particles are deposited on the surfaces of carbon nano tube electrodes by an electrochemical deposition technology. A single-stranded DNA (ssDNA) probe is self-assembled to the surfaces of SWCNTs-Au electrodes and subjected to hybridization reaction with complementary ssDNA. The change of electron transfer resistance before and after hybridization is recorded by utilizing the unique specific surface areas of the carbon nano tubes and the quick dynamic characteristics of the electrodes and by an electrochemical impedance method under the action of current signal amplification of nanometer gold to realize the quantitative detection of the complementary DNA. The detection limit of the sensor on the target DNA can reach between 10 and 20 M, so the sensor has the advantages of high sensitivity and selectivity, capability of being used repeatedly and the like, and has important significance in fields of medical diagnosis, the food industry, environment friendliness and the like.
Owner:WENZHOU UNIVERSITY

Liquid phase chip for detecting breast cancer prognosis-related gene mRNA expression level

The invention discloses a liquid phase chip for detecting breast cancer prognosis-related gene mRNA expression level, which mainly comprises a microsphere which aims at different target genes and is coupled to amido modified supporting probes, supporting extended probes connecting the supporting probes and target gene mRNA and amplification extended probes. Each supporting probe mainly comprises a 5' end spacer arm sequence and a 3' end specific sequence P1 which is in complementary pairing with a supporting extended probe; the supporting probe comprises SEQ. ID NO.1 specific to ESR1gene and SEQ. ID NO.2 specific to PGR gene; each supporting extended probe mainly comprises a 5' end specific sequence P2 which can be correspondingly combined with the target genes, a spacer arm sequence and a 3' end specific sequence P3 which is in complementary pairing with the specific sequence P1 of a corresponding supporting probe; and the supporting extended probes comprise amplification extended probes, wherein each amplification extension probe comprises a 5' end specific sequence P4 which can be combined with the target genes, a spacer arm sequence and a 3' end sequence P5; or the liquid phase chip also comprises a labeling probe in complementary pairing with the sequence P5. The liquid phase chip can perform hybridization reaction under the homogeneous reaction condition, and the designed probes have the advantages of high specificity and high signal to noise ratio during detection.
Owner:SUREXAM BIO TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products