Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

94 results about "Environmental variation" patented technology

Environmental variation. the ability of an organism to alter greatly its PHENOTYPE depending upon environmental conditions. The phenomenon is seen most clearly in plants, perhaps because they are fixed in the ground. For example, a dandelion will produce an erect habit with long flower stalks if in a garden border with other plants.

Moving object detecting and tracing method in complex scene

The present invention discloses method for moving target detection and tracking in a complex scene. The method comprises two steps of multiple moving target detection and multiple moving target tracking: in the multiple moving target detection, a background model based on self adapting nonparametric kernel density estimation is established with the aim at the monitoring of the complex scene, therefore the disturbance of the movement of tiny objects can be effectively suppressed, the target shadow is eliminated, and the multiple moving target is detected; in the multiple moving target tracking, the target model is established, the moving state of the target is confirmed through ''matching matrix'', and corresponding tracking strategy is adopted according to the different movement condition of the target. Target information is ''recovered'' through the probabilistic reasoning method, and the target screening degree of the target is analyzed with the aim at the problem that multiple targets screen mutually. The algorithm of the present invention can well realize the moving target tracking, obtains the trace of the moving target, and has good real time and ability of adapting to the environmental variation. The present invention has wide application range and high accuracy, therefore being a core method for intelligent vision monitoring with versatility.
Owner:HUNAN UNIV

High-precision matrix-vector multiplication on a charge-mode array with embedded dynamic memory and stochastic method thereof

Analog computational arrays for matrix-vector multiplication offer very large integration density and throughput as, for instance, needed for real-time signal processing in video. Despite the success of adaptive algorithms and architectures in reducing the effect of analog component mismatch and noise on system performance, the precision and repeatability of analog VLSI computation under process and environmental variations is inadequate for some applications. Digital implementation offers absolute precision limited only by wordlength, but at the cost of significantly larger silicon area and power dissipation compared with dedicated, fine-grain parallel analog implementation. The present invention comprises a hybrid analog and digital technology for fast and accurate computing of a product of a long vector (thousands of dimensions) with a large matrix (thousands of rows and columns). At the core of the externally digital architecture is a high-density, low-power analog array performing binary-binary partial matrix-vector multiplication. Digital multiplication of variable resolution is obtained with bit-serial inputs and bit-parallel storage of matrix elements, by combining quantized outputs from one or more rows of cells over time. Full digital resolution is maintained even with low-resolution analog-to-digital conversion, owing to random statistics in the analog summation of binary products. A random modulation scheme produces near-Bernoulli statistics even for highly correlated inputs. The approach has been validated by electronic prototypes achieving computational efficiency (number of computations per unit time using unit power) and integration density (number of computations per unit time on a unit chip area) each a factor of 100 to 10,000 higher than that of existing signal processors making the invention highly suitable for inexpensive micropower implementations of high-data-rate real-time signal processors.
Owner:GENOV ROMAN A +1

RADIO FREQUENCY IDENTIFICATION (RFID) TAG(S) and SENSOR(S)

A passive radio frequency identification (RFID) sensor is provided. This passive RFID sensor includes at least one antenna, at least one processing module, and a wireless communication module. The at least one antenna has an impedance that may vary with an environment in which the sensor is placed. Additionally, the antenna impedance might be permanently changed in response to an environmental variation or an event. The at least one processing module couples to the antenna and has a tuning module that may vary a reactive component impedance coupled to the antenna in order to change a system impedance. The system impedance includes both the antenna impedance and the reactive component impedance. The tuning module then produces an impedance value representative of the reactive component impedance. A memory module may store the impedance value which may then later be communicated to an RFID reader via the wireless communication module. The RFID reader may then exchange the impedance value representative of the reactive components of impedance with the RFID reader such that the RFID reader or another external processing unit may process the impedance value in order to determine environmental conditions at the inductive loop. These environmental conditions may include but are not limited to temperature, humidity, wetness, or proximity of the RFID reader to the passive RFID sensor.
Owner:RFMICRON

Ground gravity unloading support method for large spatial reflector

A ground gravity unloading support method for a large spatial reflector belongs to the technical field of space optics. In order to solve the problem that the gravity environmental variation of the large spatial reflector results in the decline of the surface shape precision of the reflector, a finite element analysis software is adopted to carry out finite element modeling on a spatial reflector assembly and analyze the variation of the reflector surface shape precision caused by gravity when the spatial reflector assembly is horizontally placed; the number and distribution of active support points at the back of the spatial reflector are primarily determined according to the size of the spatial reflector, the variation analysis result of the reflector surface shape precision and the layout condition of a support structure; after support force is applied on the active support points of the spatial reflector, the variation condition of the reflector surface shape precision caused by gravity when the spatial reflector assembly is horizontally placed is analyzed, the reflector surface shape precision result of the spatial reflector assembly is enabled to meet optical design requirements through analyzing and adjusting the size of the support force applied on the active support points and the number and distribution of the active support points, and the gravity unloading of the reflector is realized.
Owner:CHANGCHUN INST OF OPTICS FINE MECHANICS & PHYSICS CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products