Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

516results about How to "Excellent magnetic properties" patented technology

Magnetoresistive effect element, magnetic memory device and manufacturing method of magnetoresistive effect element and magnetic memory device

A magnetoresistive effect element (1) has an arrangement in which a pair of ferromagnetic material layers (magnetization fixed layer (5) and magnetization free layer (7)) is opposed to each other through an intermediate layer (6) to obtain a magnetoresistive change by causing a current to flow in the direction perpendicular to the layer surface and in which the ferromagnetic material layers are annealed by anneal including rotating field anneal and the following static field anneal. A magnetic memory device comprises this magnetoresistive effect element (1) and bit lines and word lines sandwiching the magnetoresistive effect element (1) in the thickness direction. When the magnetoresistive effect element (1) and the magnetic memory device are manufactured, the ferromagnetic material layers (5, 7) are annealed by rotating field anneal and the following static field anneal. There are provided the magnetoresistive effect element that can obtain excellent magnetic characteristics by controlling magnetic anisotropies of the ferromagnetic material layers, the magnetic memory device including this magnetoresistive effect element and which may have excellent write characteristics, and methods for manufacturing these magnetoresistive effect element and magnetic memory device.
Owner:DEXERIALS CORP

Magnetoresistive effect element, magentic memory device and manufacturing method of magnetoresistive effect element and magnetic memory device

A magnetoresistive effect element (1) has an arrangement in which a pair of ferromagnetic material layers (magnetization fixed layer (5) and magnetization free layer (7)) is opposed to each other through an intermediate layer (6) to obtain a magnetoresistive change by causing a current to flow in the direction perpendicular to the layer surface and in which the ferromagnetic material layers are annealed by anneal including rotating field anneal and the following static field anneal. A magnetic memory device comprises this magnetoresistive effect element (1) and bit lines and word lines sandwiching the magnetoresistive effect element (1) in the thickness direction. When the magnetoresistive effect element (1) and the magnetic memory device are manufactured, the ferromagnetic material layers (5, 7) are annealed by rotating field anneal and the following static field anneal. There are provided the magnetoresistive effect element that can obtain excellent magnetic characteristics by controlling magnetic anisotropies of the ferromagnetic material layers, the magnetic memory device including this magnetoresistive effect element and which may have excellent write characteristics, and methods for manufacturing these magnetoresistive effect element and magnetic memory device.
Owner:SONY CORP

Soft magnetic composite material of glass insulating layer and preparation method thereof

A preparation method of a soft magnetic composite material containing a glass insulating layer, relates to a preparation method of a soft magnetic composite material. The soft magnetic composite material of the glass insulating layer and the preparation method thereof disclosed by the invention solve technical problems that high-temperature annealing cannot be performed on existing soft magnetic composite materials to remove residual stress generated in the preparation process and to further improve magnetic performance of the soft magnetic composite material and magnetic performance cannot be kept steady all the time when the material emits heat in an environment with a great temperature difference or in long-term use process. The soft magnetic composite material containing the glass insulating layer disclosed by the invention is formed by depositing amorphous substances on magnetic powder and then annealing after cold-pressing or hot-pressing. The soft magnetic composite material containing the glass insulating layer disclosed by the invention has an initial magnetic conductivity up to 200 or more, a maximum magnetic conductivity up to 900 or more, a saturated magnetization intensity up to 1.5 T, and a coercive force less than 250 A/m; and iron loss at 50 Hz and 1 T alternating current magnetic field can be less than 3 W/Kg.
Owner:HARBIN INST OF TECH

Method for preparing ferromagnetic nano composite material with pulse-ultrasound electrodeposition

The invention relates to a method for preparing a composite material, which comprises the following steps of: putting a basal body subjected to pretreatment into a conventional electroplating bath, and applying an electric field and an ultrasonic field on the plating bath with an ultrasonic generator and a pulsing power source. The process of pulse-ultrasound electrodeposition generally comprises the following steps of: 1, elecroplating pretreatment comprising pretreatment of the basal body and preparation of electroplate liquid; 2, electrodeposition process: putting the basal body which is pretreated in the step one into the prepared electroplate liquid for electrodeposition; and3, post treatment of plating parts, mainly comprising the working procedures of ultrasonic cleaning for the plating parts which are deposited in the step two and anhydrous alcohol cleaning. In the invention, in the electroplate liquid containing nickel and iron ions and insoluble nanoparticles, the nanoparticles are uniformly distributed in the liquid by using ultrasonic stirring, the nanoparticles and substrate metal ions are simultaneously deposited to obtain the ferromagnetic nano composite material composed of substrate metal nickel-iron and the nanoparticles under the condition that positive and negative pulse current or voltage are applied.
Owner:DALIAN UNIV

Method for preparing high-silicon steel from low-silicon steel

The invention belongs to the field of material preparation, in particular to a method for preparing high-silicon steel from low-silicon steel. The method comprises the following steps: a, using a low-silicon steel hot-rolled plate with a smooth surface as a base material, and carrying out cold rolling so as to obtain a thin plate; b, carrying out acid pickling on the thin plate so as to remove oil stains and an oxide film on the surface; c, in a temperature range of 450-550DEG C, carrying out thermal insulation on the cold-rolled thin plate in a solid siliconizing agent for 20-30 minutes; d, in a temperature range of 750-820DEG C, carrying out solid siliconizing on the thermally insulated thin plate for 10-30 minutes in the solid siliconizing agent; e, rolling the thin plate at a temperature of 350-450DEG C; f, at a non-oxidization atmosphere, carrying out diffusion annealing on the siliconized thin plate at a temperature of 850-1100 DEG C for 30-480 minutes; and g, under nitrogen protection, rapidly cooling the thin plate subjected to diffusion annealing to a room temperature and coating a MgO coating. The method is characterized by low raw materials and simple processing and treating. The problems of steel band surface serious corrosion and Fe losses, caused by high Cl-ion concentration in the process of preparing the high-silicon steel by a vapor deposition process are solved.
Owner:NORTHEASTERN UNIV

Method for preparing large-size sintered samarium cobalt permanent magnet

A method for preparing a large-size sintered samarium cobalt permanent magnet includes the following steps that firstly, a samarium cobalt alloy ingot is smashed, milled and mixed to obtain magnetic powder; secondly, oriented-pressing and forming are conducted in a magnetic field to obtain blanks; thirdly, two or more blanks are spliced together and tightly wrapped by fresh-keeping films, vacuum packaging is conducted, cold isostatic pressing is conducted, and a formed blank is obtained; fourthly, the formed blank is subjected to vacuum pre-sintering, inert gas is introduced for sintering, solid solution is conducted, air cooling is conducted to normal temperature, and a sintered blank is obtained; fifthly, the sintered blank is subjected to aging treatment, cooling and heat preservation are conducted, air cooling is conducted to normal temperature, and the large-size sintered samarium cobalt permanent magnet is obtained through machining. The ultra-large sintered samarium cobalt permanent magnet with the unilateral size larger than 130 mm can be prepared through the method, is good in magnetic property, and can reach the XGS30H trademark magnet standard, the product yield reaches 94% or above, the magnetic property is not changed after temperature-resistant and fatigue testing, and the appearance is normal. The process is simple, large-scale production can be achieved, and the cost is low.
Owner:HUNAN AEROSPACE MAGNET & MAGNETO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products