Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

188results about How to "Increase areal density" patented technology

Thermal preparation method of solution of self-supported porous graphene-based membrane

ActiveCN104192836AFast oxidation-reduction reactionIncrease specific capacitance valueCvd grapheneElectrochemical energy storage
The invention relates to a thermal preparation method of a solution of a self-supported porous graphene-based membrane, relates to a preparation method of a self-supported porous graphene-based membrane, and aims to solve the technical problems that the size and the thickness of a conventional self-supported porous graphene-based membrane are limited and the electrochemical performance of the conventional self-supported porous graphene-based membrane is poor caused by severe interlay lamination of graphene sheets in the chemical reduction process. The thermal preparation method comprises the following steps: dispersing graphene oxide into water, adding or not adding a doped carbon material, concentrating, and spreading into a membrane, thereby obtaining a graphene oxide membrane; preparing a thermal treatment solution by using acid or alkali solute, putting the graphene oxide membrane into a reaction kettle with a polytetrafluoroethylene lining, adding the thermal treatment solution according to the standard that the membrane is submerged, sealing the reaction kettle, and subsequently performing thermal treatment, thereby obtaining the self-supported porous graphene-based membrane. The self-supported porous graphene-based membrane is prepared by orderly arranging graphene sheets in parallel, and due to the gaps among the graphene sheet layers, the self-supported porous graphene-based membrane can be used in electrochemical energy storage devices such as supercapacitors.
Owner:HARBIN INST OF TECH

Method for preparing active layer structure with high-density gallium nitride quantum dots

The invention relates to a method for preparing an active layer structure with high-density gallium nitride quantum dots; the method comprises the following steps of: (1). depositing a layer of SiO or SiNx dielectric thin film material with the thickness of 10-50nm on a GaN template or surfaces of other semiconductor films, painting a mixing copolymer of PS (Polystyrene) and PMMA (Polymenthyl Methacrylate) on the surface of the dielectric thin film, obtaining a PS nanometer column graph after cleaning the PMMA, transferring the PS nanometer column graph to the dielectric thin film layer by adopting plasma etching, wherein the PS nanometer column graph is prepared according to the following parameters: (1) the surface density reaches 0.8-1.0*1011cm<-2>; (2) the PS nanometer column graph istransferred to the SiNx or SiO2 dielectric thin film layer by adopting reactive ion etching, the PP is removed to obtain a template on which a GaN nanometer point structure grows for the second time through MOCVD (Metal-organic Chemical Vapor Deposition); and (3) a GaN-base quantum dot structure grows, emits strong royal purple light and is used for manufacturing the active layer structure in a light-emitting diode (LED) with high efficiency and a laser device (LD) optoelectronic device.
Owner:NANJING UNIV

Electrode preparation method and battery

The invention discloses an electrode preparation method and a battery. The battery anode is prepared by pasting an electrode film prepared from an active substrate, a conductive agent and a binder toa current collector, the surface density of a pole piece is improved, the electrode capacity and the pole piece stability are improved, and the internal resistance is reduced. In the preparation process of the electrode film, lamellar crystals of the binder are stretched to paste the active substance and conductive agent, influence of expansion and contraction of the active substance caused by ionembedding and separating is reduced. The battery cathode is prepared by coating a slurry prepared from a pre-lithium active substance, a binder and a conductive agent on the current collector, the active substrate and conductive agent of the cathode are wetted rapidly, dispersed ultra-finely and homogeneous in a binder solution, the amount of the solvent for slurry dispersion is reduced, energy consumption for drying is reduced, the electrode process is shortened, and the load capacity of the cathode active substance is improved. The anode and cathode of the battery can be designed in an integrated way, and energy storage of the battery is improved. The electrode preparation method is simple, production and manufacture are realized by means of existing equipment, and the method is easy topopularize.
Owner:CHINA FIRST AUTOMOBILE

A scandium-containing cast aluminum-lithium alloy and a preparation method thereof

InactiveCN108570579AImprove refinementInhibition of growth and coarseningLithiumThree stage
A novel scandium-containing cast aluminum-lithium alloy is disclosed. The alloy includes, by weight, 1.6-1.99% of Li, 0.9-1.9% of Cu, 0.2-0.7% of Mg, 0.1-0.25% of Zr, 0.05-0.35% of Sc, and impurity elements which are Fe, Si, Na, K and P, with the balance being Al, with the Fe content being less than 0.15% and the total content of the impurity elements being less than 0.25%. During preparation, Al-Cu and Al-Zr master alloys, pure aluminum, pure Mg and pure Li are smelted to obtain an aluminum alloy; then three stages of solid solution heat treatment are performed including solid solution heat treatment at 440-460 DEG C for 32 h, solid solution heat treatment at 510-520 DEG C for 24-32 h and solid solution heat treatment at 530-540 DEG C for 1-6 h; and after water quenching, artificial ageing treatment at 150-190 DEG C is performed for 16-48 h to obtain the novel scandium-containing cast aluminum-lithium alloy. The obtained novel scandium-containing cast aluminum-lithium alloy has a uniform microscopic structure, stable performance, density lower than density of traditional aluminum alloys, higher elastic modulus and rigidity, and other mechanical properties, and is low in cost. Theultimate tensile strength of the novel scandium-containing cast aluminum-lithium alloy can be 450-490 MPa and the specific elongation is 4.5-7.0%.
Owner:SHANGHAI JIAO TONG UNIV

Perforated positive plate of lithium ion battery, and preparation method thereof

The invention discloses a perforated positive plate of a lithium ion battery. The perforated positive plate comprises a current collector coated with a lithium-iron oxide layer, and active substance layers arranged on upper and lower surfaces of the current collector, wherein uniform diffusion through holes are formed on the active substance layers and the current collector. The preparation methodcomprises the following steps: firstly coating a layer of Li5FeO4 on the aluminum foil surface to provide redundant lithium source for the battery, thereby retarding the lithium ion with the negativepole first effect to form irreversible SEI film consumption and enhancing long circulation performance; secondly, increasing the energy density of the battery by using the positive electrode with high compaction and high surface density; and finally forming a perforated pole plate, wherein the electrolyte can sufficiently enter the internal of the active substance to increase the infiltration ofthe electrolyte and retarding the expansion of the active substance, and the perforated positive plate can be applied in the battery industrialization in large scale. The conventional perforated aluminum foil is obtained by coating after perforating, and the perforated positive plate is obtained by perforating after coating, so that the surface density of the active substance is higher, and the energy density of the battery is 30% higher in relative to the conventional perforated pole plate.
Owner:HEFEI GUOXUAN HIGH TECH POWER ENERGY

Lithium-sulfur battery carbon fiber reinforced three-dimensional graphene-sulfur positive electrode material, preparation method of material and preparation method of positive electrode

The invention discloses a lithium-sulfur battery carbon fiber reinforced three-dimensional graphene-sulfur positive electrode material, a preparation method of the positive electrode material and a preparation method of the positive electrode, relates to a lithium-sulfur battery positive electrode material, a preparation method of the positive electrode material and a preparation method of the positive electrode, and can be used for solving the technical problem that the conventional graphene-sulfur electrode is low in area specific capacity and bad in rate capability. The positive electrode material is formed by dispersing elemental sulfur in holes of carbon fiber modified spongy graphene. The preparation method of the positive electrode material comprises the following steps: adding carbon fibers into mixed liquid of graphene oxide dispersion liquid, carrying out hydro-thermal synthesis to obtain hydrogel and carrying out freeze-drying to obtain carbon fiber modified three-dimensional spongy graphene; cutting the carbon fiber modified three-dimensional spongy graphene into slices, sprinkling the elemental sulfur on the surfaces of the slices, placing the slices in a vacuum tank and heating to obtain the lithium-sulfur battery carbon fiber reinforced three-dimensional graphene-sulfur positive electrode material. The positive electrode is prepared by slicing the positive electrode material and then pressing. The area specific capacity of the electrode material is up to 10 mAh / cm<2>, so that the electrode material can be applied to lithium ion batteries.
Owner:HARBIN INST OF TECH

Lithium-ion-battery negative electrode slurry, preparing method thereof and preparing method of negative electrode plate

The invention provides lithium-ion-battery negative electrode slurry, a preparing method thereof and a preparing method of a negative electrode plate. The lithium-ion-battery negative electrode slurry is prepared from, by weight, 85 parts to 92.5 parts of negative-electrode active substances, 3.5 parts to 6 parts of conductive agents, 4 parts to 9 parts of binding agents and 172 parts to 295 parts of solvents. The negative-electrode active substances are prepared from, by weight, 82.5 parts to 92.2 parts of lithium-titanium composite oxide and 0.26 part to 2.78 parts of acidic compound additives. By means of the lithium-ion-battery negative electrode slurry, the surface performance of material particles is improved, the reaction activation energy and the particle granularity of electrode materials are reduced, and the distribution evenness of particles in the slurry is improved; by means of the preparing method of the negative electrode slurry and the preparing method of the negative electrode plate, the prepared negative electrode slurry is good in dispersity and stability; the prepared negative electrode plate is good in softness and processing performance, the surface density and the adhesive force of the coated negative-electrode active materials are increased, and electrochemical performances such as the battery capacity use ratio and cycling performance are effectively improved.
Owner:HENAN KELONG NEW ENERGY CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products