Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

604 results about "Nanopillar" patented technology

Nanopillars is an emerging technology within the field of nanostructures. Nanopillars are pillar shaped nanostructures approximately 10 nanometers in diameter that can be grouped together in lattice like arrays. They are a type of metamaterial, which means that nanopillars get their attributes from being grouped into artificially designed structures and not their natural properties. Nanopillars set themselves apart from other nanostructures due to their unique shape. Each nanopillar has a pillar shape at the bottom and a tapered pointy end on top. This shape in combination with nanopillars' ability to be grouped together exhibits many useful properties. Nanopillars have many applications including efficient solar panels, high resolution analysis, and antibacterial surfaces.

Method for generating vector light beam based on transmission-type medium metasurface

The invention discloses a method for generating a vector light beam based on a transmission-type medium metasurface, and belongs to the field of micro-nano optics. The method comprises the steps: selecting a noncrystalline silicon nanorod as a medium metasurface structure unit, carrying out the designing according to the geometric size of the nanorod, and enabling the nanorod to have a half wave plate function under the irradiation of light with the specific working wavelength; changing an azimuth angle of the nanorod unit and achieving the regulation and control of the polarization directionof an emergent optical field; obtaining the azimuth angle distribution of a nanorod array according to the polarization direction distribution of a target rod vector light beam, generating a processing file through coding, and carrying out the processing; and obtaining the target rod vector light beam after the incident polarization light passes through the medium metasurface. The invention also discloses a method for generating a vector light beam distributed in any polarization direction based on the transmission-type medium metasurface, and the method can be used for enabling a polarizationpattern to be hidden in the vector light beam, and is used for optical anti-fake occasions and polarization encryption occasions. The method can generate any vector light beam in a miniature and compact optical system.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Method for preparing orderly gallium nitride nano pillar array with ultraviolet soft imprinting

Provided is a method for preparing an orderly gallium nitride nano pillar array with ultraviolet soft imprinting. A dielectric film is grown on a gallium nitride substrate, a metal orderly nano pillar (hole) structure is obtained through an ultraviolet soft imprinting double-layer stripping technology, a dielectric film nano pillar (hole) structure with a changeable and adjustable diameter is obtained through a reactive ion etching method, and inductively coupled plasma is used for being etched to obtain the gallium nitride orderly nano pillar (hole) array with different diameters. The dielectric film which comprises SiO2 and SiNx is grown on the gallium nitride substrate, and PMMA and ultraviolet curing glue coat the surface of a substrate sample in a rotary mode in sequence. A large-area low-defect orderly nano hole (pillar) array structure is formed on the ultraviolet curing glue through an ultraviolet soft imprinting technology, residual glue and the PMMA are then etched through a reactive ion etching technology, and the metal nano pillar (hole) array structure is obtained by stripping an evaporated metallic film. A dielectric film layer structure is etched through the reactive ion etching method, and the dielectric nano pillar (hole) structure with the changeable and adjustable diameter is obtained.
Owner:NANJING UNIV

Femtosecond laser-controlled silicon surface nanopillar preparation method based on dual-wavelength electronic dynamic control

ActiveCN105499792AEfficient and precise preparationAchieve optimal controlLaser beam welding apparatusMicro nanoNanopillar
The invention relates to a femtosecond laser-controlled silicon surface nanopillar preparation method based on dual-wavelength electronic dynamic control, and belongs to the technical field of femtosecond laser application. The method comprises the steps that on the basis of local instant electronic exciting dynamic control, the wave length of the fundamental frequency laser is converted into 400 nm from 800 nm through a frequency doubling technology, and the surface micro-nano structural morphology is controlled by adopting a dual-wavelength femtosecond laser, wherein a first beam generates a generic plasma lens structure (PL) on the surface of a material, a second beam generates surface plasma along the edge of the generic PL structure and generates a gradient field distributed along the center of a light spot, and then the material generates the force extruding towards the center under the action of the pulse to form a convex nanopillar structure; preparation of large-area uniform nanopillar arrays is achieved through control over a procedure of a processing platform. Compared with an existing method, the preparation method has the advantages that the nanopillar processing precision and processing efficiency are effectively improved, efficient and precise control over the crystalline silicon surface nano structure is achieved, and the application value on the aspects such as information storage and solar cells is achieved.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Transversal epitaxial growth method for nano area of semiconductor film

The invention discloses a cross epitaxial growth method of a semiconductor film, which comprises the following steps: (1) a nucleated metallic catalyst film is evaporated on a substrate material and island-shaped metallic catalyst particles which are evenly distributed on the substrate are obtained after the film is annealed; (2) in external equipment, a crystal nucleus is formed on the bottom of island-shaped metallic particles; and then nano-column arrays grow longitudinally; (3) a wet etching method is used for eliminating the metallic catalyst on a nano-column to obtain semiconductor nano-column array structures with the same orientation and height; (4) the etched nano-column is put into the external equipment and a lateral epitaxy technology is used for integrating the nano-column arrays into a flat surface; and then a semiconductor epitaxial film with the required thickness grows on the flat surface. As cross epitaxy occurs in nano area, defects and diffusion of residual stress can be effectively restrained and the quality of film crystals is more uniform than that of film crystals prepared by the traditional method, thus improving the crystal quality of two-dimensional semiconductor films; furthermore, the invention has simple method and wide applicability.
Owner:SUZHOU NANOJOIN PHOTONICS

Tungsten trioxide nano-film with photocatalytic performance, and preparation method thereof

The invention discloses a tungsten trioxide nano-film with photocatalytic performance, and a preparation method thereof. The tungsten trioxide nano-film is characterized in that a WO3 nano layer with a WO3 nano structure is grown on a WO3 crystal seed layer, and the WO3 nano structure is shaped like a two-dimensional flying saucer including a middle main sheet and a nano-column. The preparation method of the tungsten trioxide nano-film comprises the steps of preparing a tungsten acid crystal seed layer precursor solution, preparing FTO (Fluorine-doped Tin Oxide) conductive glass with the crystal seed layer, preparing thermal tungsten acid solvent precursor solution, and finally performing hydrothermal synthesis to obtain the tungsten trioxide nano-film. According to the tungsten trioxide nano-film with photocatalytic performance, and the preparation method thereof, the specific surface area of the WO3 nano layer can be effectively enlarged; the efficiency of photocatalytic water splitting can be improved, the performance of photocatalytic water splitting in a photoelectric chemical pool is excellent, and excellent chemical stability can be achieved, the preparation method is simple, and the low-cost and large-scale application can be realized.
Owner:TIANJIN UNIV

Multilayer structure surface enhanced Raman scattering base and preparation method thereof

The invention belongs to the technical field of nano-imprinting and spectra, and in particular relates to a multilayer structure surface enhanced Raman scattering base and a preparation method thereof. The surface enhanced Raman scattering base is simple in process, high in efficiency, high in enhancement factor and biocompatible. The base consists of a substrate and a periodic nano columnar structure which is positioned on the substrate, wherein the nano columnar structure is a multilayer structure; the multilayer structure consists of alternation layers and a gold layer; the alternation layers consist of silver and media; the gold layer is positioned on the topmost layer. A nano-imprinting technology is used as a core technology, and a reactive ion etching process, a metal evaporation process, a silicon dioxide plating process, a metal peeling process and the like are combined to prepare a multilayer nano structure, so that the technical problems that a silver structure base is not biocompatible and a gold structure base is low in enhancement factor are solved; on the basis of ensuring biocompatibility, the enhancement factor of the base is greatly improved, the detection is efficient and sensitive, and the base can be applied to biological detection after further treatment.
Owner:WUXI IMPRINT NANO TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products