Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

289 results about "Multimedia network" patented technology

Method of adding a device to a network

A method of adding a device to an existing or new electrical or electronic automation or multimedia network. The invention facilitates adding a device to the network that can communicate using various protocols such as LonWorks, CEBus, X-10, etc. over media such as AC power line, IR, RF, twisted pair, optical fiber, etc. The method is a mechanism for adding a device to a system that can be used by an ordinary user of network capable electrical devices. The method comprises the steps an installer would perform including the handshaking that needs to occur between devices to accomplish the binding process. A Functional Profile for LonWorks networks is given as an example. This includes a Home Device profile that employs an automated explicit type messaging for all devices intended for use in a home environment. The invention includes adding to the device an install button and a visual indicator for status such as an LED. Alternatively, existing buttons and LEDs on the device may be used for installed and binding purposes. Other methods of binding can be employed by the use of wired or wireless handheld tools, remote controls, etc. Other interfaces and user feedback can be used such as touch screen, personal computers, cellular phones, PDAs, etc which can offer simple ‘virtual’ binding by the press of an icon versus the physical button on the device. The binding can be performed locally or remotely such as via LAN, WAN, Internet, etc.
Owner:LEVITON MFG

Private multimedia network

Private Multimedia Network (PMN) complements, and is an improved alternative to digital videoconferencing and multimedia delivery systems. PMN's desktop and meeting room delivery system is designed to support the exponential growth of enterprise team-based initiatives. PMN provides “one-stop-shopping” for the full multimedia rubric. It delivers user-friendly control and cost/effective TV and broadcast quality videoconferencing and other multimedia services to organizations with “critical mass” campuses and building complexes. Though digital systems dominate the videoconferencing marketplace, PMN's hybrid digital/analog architecture has no digital peer in breadth or quality of service within or between campuses. The novel architecture leverages advances in analog video short-haul technology, digital long-haul technology, and telephony audio and control technology to deliver four-level multimedia services: 1) premise; 2) campus; 3) multi-site; and 4) ubiquitous (any site with ITU compatible multimedia equipment (e.g., videoconferencing) and communication links). On balance, the price/performance afforded by PMN's centralized Telco-based control and audio delivery combined with its decentralized broadcast quality video distribution raise videoconferencing and other multimedia services to a new level of ubiquity. Just as telephones and PC LANs, PMN delivers expensive Boardroom and mobile cart videoconferencing capabilities to every desktop via existing multimedia wall plates. The key phases for this invention are: Lip-synchronization across differing network communication links and protocols; Ubiquitous multimedia service; Cost/effective room and desktop deployment; Telco control and audio; Broadcast quality video; Isochronous Quality; Centralized control and distributed operation; and Interoperable architecture.
Owner:SORRELL JOHN D

Method of adding a device to a network

A method of adding a device to an existing or new electrical or electronic automation or multimedia network. The invention facilitates adding a device to the network that can communicate using various protocols such as LonWorks, CEBus, X-10, etc. over media such as AC power line, IR, RF, twisted pair, optical fiber, etc. The method is a mechanism for adding a device to a system that can be used by an ordinary user of network capable electrical devices. The method comprises the steps an installer would perform including the handshaking that needs to occur between devices to accomplish the binding process. A Functional Profile for LonWorks networks is given as an example. This includes a Home Device profile that employs an automated explicit type messaging for all devices intended for use in a home environment. The invention includes adding to the device an install button and a visual indicator for status such as an LED. Alternatively, existing buttons and LEDs on the device may be used for installed and binding purposes. Other methods of binding can be employed by the use of wired or wireless handheld tools, remote controls, etc. Other interfaces and user feedback can be used such as touch screen, personal computers, cellular phones, PDAs, etc which can offer simple ‘virtual’ binding by the press of an icon versus the physical button on the device. The binding can be performed locally or remotely such as via LAN, WAN, Internet, etc.
Owner:LEVITON MFG

Multimedia network appliances for security and surveillance applications

Network appliances for use in combination with a network based full service, multi-media surveillance system provide a wide range of monitoring techniques utilizing digital network architecture. The appliances may be connected to the surveillance system for transmitting event data, video and / or image monitoring information, audio signals and other data over significant distances using digital data transmission over networks such as a local area network (LAN), a wireless LAN (WLAN), a wide area network such as the Internet for other networks, permitting remote manual and / or automatic assessment and response. The wireless LAN connectivity permits local distribution of sensor information audio, video and image data with relatively high bandwidth without requirement of a license and without relying on a common carrier and the fees associated therewith. The surveillance system may be interfaced with a WAN (wide area network) such as frame relay or the Internet for providing a worldwide, low cost surveillance system with virtually unlimited geographic application. Multiple sensors and appliances may be accommodated, as required. The topology of the network will be established by the geographic situation of the specific installation. Appropriate firewalls may be set up as desired to protect unauthorized access to the system or collected data. The server based system permits a security provider to have access to the appliance, related sensor and surveillance data or to configure or reconfigure the system from any station on the Intranet or Internet. The use of power supplied over LAN wiring to various configurations of security network appliances provides an important simplification and cost reduction of the installation of various alarm and security system devices, such as card readers and scanners, audible devices, strobe enunciators, keypads, motion detectors, and the like. The use of networked sensors in the form of network appliances allows various servers and monitors to share common sensors, further reducing installation costs and greatly increased flexibility.
Owner:PR NEWSWIRE

Methods for enabling near video-on-demand and video-on-request services using digital video recorders

A near video-on-demand (VOD) service enabled using a digital video recorder (DVR) for the simultaneous storage and playback of multimedia data. A DVR is connected over a network to a multimedia network source. A VOD selection is requested by the DVR from the network source. A multimedia data signal is received by the DVR from the network source. The data signal contains the requested VOD selection. A first received portion of the received data signal is stored on the DVR. The first received segment is played by the DVR for display on a display device. Simultaneously during the playing of the first received segment, a second received segment of the received data signal is received from the network source and stored on the DVR while the first received segment is played the display device. Thus, the requested VOD selection begins playing on the display device prior to the reception of the entire compressed multimedia data signal so that a requested VOD selection can begin being displayed nearly instantaneously after the request for it is made. A video-on-request (VOR) service is also enabled using a DVR. VOR selection data is received by a centralized database device, such as a network server, from a plurality of users. Each VOR selection data includes at least one requested video selection and video recorder identifying information for identifying each particular video recorder. A transmission priority of requested video selections is determined dependent on the frequency of requests ‘received from the plurality of users. A transmission channel and time is determined based on the transmission priority. DVR control signals are transmitted to automatically tune in the determined transmission channel at the determined transmission time and record the particular video selection.
Owner:MICROSOFT TECH LICENSING LLC

Multimedia network instructional system

InactiveCN106157715AModify personal contact informationChange login passwordElectrical appliancesLesson studyOnline learning
The invention discloses a multimedia network instructional system which comprises an administrator side, a teacher side and N student sides, wherein the administrator side is used for carrying out instructional resource administration and training business administration; the teacher side is used for performing an instructional activity and carrying out a learning supporting activity; the student sides are used for carrying out course learning and communicating with a teacher and other students; the administrator side feeds back information to the teacher side or monitors the work of the teacher; the teacher side provides or correct an instructional document and an instructional resource for the administrator side; the administrator side implements a service for the student sides, and provides a course constructing module for the student sides; the student sides can mutually learn and communicate with the teacher side, and provide a course feeding-back module for the teacher side; the student sides can learn and communicate with one another, and complete a course implementing module. The multimedia network instructional system can support instructional activities of on-line learning of the students, instruction giving of the teacher and examinations, provides personalized services for users at different levels and with different demands, and provides services of learning other languages by a mother language for the users.
Owner:广州骏颖泰教育科技有限公司

Methods for enabling near video-on-demand and video-on-request services using digital video recorders

A near video-on-demand (VOD) service enabled using a digital video recorder (DVR) for the simultaneous storage and playback of multimedia data. A DVR is connected over a network to a multimedia network source. A VOD selection is requested by the DVR from the network source. A multimedia data signal is received by the DVR from the network source. The data signal contains the requested VOD selection. A first received portion of the received data signal is stored on the DVR. The first received segment is played by the DVR for display on a display device. Simultaneously during the playing of the first received segment, a second received segment of the received data signal is received from the network source and stored on the DVR while the first received segment is played the display device. Thus, the requested VOD selection begins playing on the display device prior to the reception of the entire compressed multimedia data signal so that a requested VOD selection can begin being displayed nearly instantaneously after the request for it is made. A video-on-request (VOR) service is also enabled using a DVR. VOR selection data is received by a centralized database device, such as a network server, from a plurality of users. Each VOR selection data includes at least one requested video selection and video recorder identifying information for identifying each particular video recorder. A transmission priority of requested video selections is determined dependent on the frequency of requests received from the plurality of users. A transmission channel and time is determined based on the transmission priority. DVR control signals are transmitted to automatically tune in the determined transmission channel at the determined transmission time and record the particular video selection.
Owner:MICROSOFT TECH LICENSING LLC

Methods for enabling near video-on-demand and video-on-request services using digital video recorders

A near video-on-demand (VOD) service enabled using a digital video recorder (DVR) for the simultaneous storage and playback of multimedia data. A DVR is connected over a network to a multimedia network source. A VOD selection is requested by the DVR from the network source. A multimedia data signal is received by the DVR from the network source. The data signal contains the requested VOD selection. A first received portion of the received data signal is stored on the DVR. The first received segment is played by the DVR for display on a display device. Simultaneously during the playing of the first received segment, a second received segment of the received data signal is received from the network source and stored on the DVR while the first received segment is played the display device. Thus, the requested VOD selection begins playing on the display device prior to the reception of the entire compressed multimedia data signal so that a requested VOD selection can begin being displayed nearly instantaneously after the request for it is made. A video-on-request (VOR) service is also enabled using a DVR. VOR selection data is received by a centralized database device, such as a network server, from a plurality of users. Each VOR selection data includes at least one requested video selection and video recorder identifying information for identifying each particular video recorder. A transmission priority of requested video selections is determined dependent on the frequency of requests 1received from the plurality of users. A transmission channel and time is determined based on the transmission priority. DVR control signals are transmitted to automatically tune in the determined transmission channel at the determined transmission time and record the particular video selection.
Owner:MICROSOFT TECH LICENSING LLC

SIP (Session Initiation Protocol) protocol-based multimedia network communication method

InactiveCN102025715AOptimizing Negotiation StrategiesEfficient and flexible transcodingWireless network protocolsTransmissionNetwork terminationCoding decoding
The invention relates to an SIP (Session Initiation Protocol) protocol-based multimedia network communication method. The method is characterized by comprising the following steps of: after an SIP server receives a failure message of a Client2, sending a help request to a media adapter gateway; and if a multimedia coding capability set supported by the media adaptor gateway and multimedia coding capability sets of two communication parties have an intersection, successfully establishing a session through the media adapter gateway with a method of carrying out media transcoding based on the coding type in the intersection. The invention has the characteristics of expanding the multimedia coding capability sets of heterogeneous terminals and optimizing a media negotiation strategy through realizing the normal communication of incompatible heterogeneous network terminals, solves the problem on intercommunication due to inconsistent network bandwidth capabilities in a heterogeneous network environment, unmatched terminal multimedia coding-decoding capability sets and large screen resolution difference, intelligently adapts the capabilities of the two multimedia network communication parties and ensures that the compatibility of multimedia network communication is better, and the application range is wider.
Owner:HUAZHONG UNIV OF SCI & TECH

Methods for enabling near video-on-demand and video-on-request services using digital video recorders

A near video-on-demand (VOD) service enabled using a digital video recorder (DVR) for the simultaneous storage and playback of multimedia data. A DVR is connected over a network to a multimedia network source. A VOD selection is requested by the DVR from the network source. A multimedia data signal is received by the DVR from the network source. The data signal contains the requested VOD selection. A first received portion of the received data signal is stored on the DVR. The first received segment is played by the DVR for display on a display device. Simultaneously during the playing of the first received segment, a second received segment of the received data signal is received from the network source and stored on the DVR while the first received segment is played the display device. Thus, the requested VOD selection begins playing on the display device prior to the reception of the entire compressed multimedia data signal so that a requested VOD selection can begin being displayed nearly instantaneously after the request for it is made. A video-on-request (VOR) service is also enabled using a DVR. VOR selection data is received by a centralized database device, such as a network server, from a plurality of users. Each VOR selection data includes at least one requested video selection and video recorder identifying information for identifying each particular video recorder. A transmission priority of requested video selections is determined dependent on the frequency of requests 1received from the plurality of users. A transmission channel and time is determined based on the transmission priority. DVR control signals are transmitted to automatically tune in the determined transmission channel at the determined transmission time and record the particular video selection.
Owner:MICROSOFT TECH LICENSING LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products