Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

607results about How to "Control area" patented technology

Method to generate a plasma stream for performing electrosurgery

An electrosurgical device to generate a plasma stream and method to perform endoscopic or laparoscopic surgery within a patient's body comprising an electrosurgical generator coupled to a electrical power source to supply power to the electrosurgical device and a plasma generator including an electrode operatively coupled to the electrosurgical generator to receive electrical energy therefrom and concentrically disposed within an inner noble gas conduit to form a plasma channel coupled to a noble gas source to feed noble gas to the inner noble gas conduit and an outer electronegative gas conduit disposed in surrounding coaxial relation relative to the inner noble gas conduit to cooperatively form an electronegative gas channel therebetween coupled to a gas source to feed electronegative gas to the electronegative gas channel or an outer aspiration conduit disposed in surrounding coaxial relation relative to the inner noble gas conduit to cooperatively form an aspiration channel therebetween coupled to a negative pressure source such that the electrode heats the noble gas to at least partially ionize the noble gas to generate the plasma stream to be directed to the surgical site to perform the surgical procedure while the electronegative gas sustains the plasma stream at the surgical site and dilutes the noble gas adjacent the surgical site or the negative pressure source removes fluid and solid debris from the surgical site respectively.
Owner:BOVIE MEDICAL CORP

Film made from graphene-carbon nanotube composite material and preparation method of film

The invention discloses a film made from a graphene-carbon nanotube composite material and a preparation method of film. The preparation method comprises the following steps: mixing graphene and carbon nanotubes sufficiently and evenly via stirring and ultrasonic dispersion, reacting the graphene with the carbon nanotubes sufficiently via hydrothermal or solvothermal conditions, removing solvents after finishing the reaction to obtain the graphene-carbon nanotube composite materials which are preformed and tangled in a network structure, forming the film on the surfaces of various base materials via coating, spraying, spin-coating and filtering the obtained graphene-carbon nanotube composite materials to obtain the composite film made from the graphene-carbon nanotube composite materials and the base materials, and removing the base materials to obtain the film made from the graphene-carbon nanotube composite materials. According to the method, graphene-carbon nanotube composition is realized simply and effectively and dispersed in the solvents stably, and the two obtained films can be applied in the aspects of heat conduction and heat radiation systems of high calorific value electronic devices, LED (light-emitting diode) lamps and liquid crystal display products.
Owner:ZHANGJIAGANG KANGDE XIN OPTRONICS MATERIAL

Super macroporous polymer microspheres and preparation method thereof

The invention provides super macroporous polymer microspheres and a preparation method thereof. The preparation method comprises the following steps of: firstly, preparing an oil-in-water in-water composite emulsion as a template for super macroporous microspheres through a two-step emulsion process; then, solidifying an oil phase by using a solvent removal method to form super macroporous microspheres provided with inner-outer through pore passages; and finally, after molding the microspheres, further crosslinking microsphere skeleton molecules to obtain microspheres with rigid resin structures. The microspheres prepared by the method have a through pore passage structure, the controllable particle size range is 0.1-300 microns, the controllable pore size range is 0.09-90 microns, and the controllable porosity range is 10-90%. Super macroporous structures are beneficial for biological macromolecules to penetrate through and enter the microspheres, the mass transfer by convection in the microspheres can be realized, and the rigid structure can tolerate higher pressure and higher flow velocity. The super macroporous polymer microspheres can be used as stationary phase fillers for chromatographic separation, immobilized carriers of enzymes, cell culture micro-carriers, tissue engineering micro scaffold materials, adsorbing materials and the like.
Owner:INST OF PROCESS ENG CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products