Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

205 results about "Stirling cycle" patented technology

The Stirling cycle is a thermodynamic cycle that describes the general class of Stirling devices. This includes the original Stirling engine that was invented, developed and patented in 1816 by Robert Stirling with help from his brother, an engineer.

Cryogenic cooler with mechanically-flexible thermal interface

A cryogenic cooler and a dewar assembly including a cooled surface; a cooling surface for removing thermal energy from said cooled surface; and an adapter disposed between said cooling surface and the cooled surface for conducting thermal energy therebetween. A first fluid is disposed between the cooled surface and the adapter for conducting thermal energy from the cooled surface to the adapter. A second fluid is disposed between the cooling surface and the adapter for conducting thermal energy from the adapter to the cooling surface whereby the cooling surface remains free to move axially relative to the adapter at a temperature of the cooling surface at which the first fluid is susceptible to freezing. This allows for movement of the cold finger relative to the dewar and adapter, due to differential thermal coefficients of expansion or support structure motion, without adversely affecting the communication of thermal energy from the load. In the illustrative embodiment, the cooler is a Stirling cycle cooler, the first fluid is thermal grease and the second fluid is nitrogen. The cooling surface is a cylindrical cold finger of the Stirling cycle cooler and the cooled surface is an inner wall of a dewar assembly. The dewar is in thermal contact with a load. The adapter is disposed between the inner wall of the dewar and the cold finger. The adapter has an end cap and a cylindrical housing extending therefrom. The housing extends at least partially along a longitudinal axis of the cold finger. An insulator is disposed about the cold finger and the adapter housing. A spring is disposed between a proximal end of the insulator and a base of the cold finger to maintain a distal end of the insulator in contact with the adapter and the adapter in contact with the dewar.
Owner:RAYTHEON CO

Micro-scalable thermal control device

A microscalable thermal control module consists of a Stirling cycle cooler that can be manipulated to operate at a selected temperature within the heating and cooling range of the module. The microscalable thermal control module is particularly suited for controlling the temperature of devices that must be maintained at precise temperatures. It is particularly suited for controlling the temperature of devices that need to be alternately heated or cooled. The module contains upper and lower opposing diaphragms, with a regenerator region containing a plurality of regenerators interposed between the diaphragms. Gaps exist on each side of each diaphragm to permit it to oscillate freely. The gap on the interior side one diaphragm is in fluid connection with the gap on the interior side of the other diaphragm through regenerators. As the diaphragms oscillate working gas is forced through the regenerators. The surface area of each regenerator is sufficiently large to effectively transfer thermal energy to and from the working gas as it is passed through them. The phase and amplitude of the oscillations can be manipulated electronically to control the steady state temperature of the active thermal control surface, and to switch the operation of the module from cooling to heating, or vice versa. The ability of the microscalable thermal control module to heat and cool may be enhanced by operating a plurality of modules in series, in parallel, or in connection through a shared bottom layer.
Owner:NAT AERONAUTICS & SPACE ADMININSTRATION UNITED STATES OF AMERICA THE AS REPRESENTED BY THE SEC

Electricity generating system driven by traveling wave thermoacoustic engine

The invention discloses a fluctuation thermoacoustic generation system, which comprises the following loop parts in sequence: cold junction heat exchanger, heat regenerator, heater, heat buffer pipe, hot junction heat exchanger, ring-shaped connection pipe and line generator in the pipe, wherein the generator contains a cylinder with one end of casing on the pipe and the other end with line sliding bearing; a double-loop magnetic-inductive soft iron with ring orifice is set in the cavity between cylinder and casing; the permanent magnet is inserted in the outer ring magnetic wall of soft iron; the coil rack is fixed on cylinder inner wall with part of coil in the ring orifice; the elastic or quality component is set in the hot junction pipe; the quality component does shift sliding along the elastic element; the elastic or quality phase modulation component is set in the greenhouse pipe; the quality component does shift sliding along the elastic phase modulation element. The invention can adjust the phase difference of pressure fluctuation and bulk flow fluctuation, which feedbacks the acoustic power to accomplish high effective Stirling cycle as well as inhibits the loop ring current to improve property of entire machine.
Owner:TECHNICAL INST OF PHYSICS & CHEMISTRY - CHINESE ACAD OF SCI

Method and apparatus for a waste heat recycling thermal power plant

This invention, a waste heat recycling thermal power plant (1000), extracts heat from the environment, and concentrates this heat to produce a cfc super-ambient temperature heat source (1330) having an elevated temperature sufficient to supply a useable heat flow to an incorporated heat engine (e.g., Rankine cycle, Stirling cycle, Seebeck cycle, etc.) flow circuit (1400). Further, waste heat recycling thermal power plant (1000) produces an sfc sub-ambient temperature heat sink (1250), thus increasing the applied temperature differential, thereby permitting the thermal efficiency of ihefc pressure expansion device (1460) to be increased as well. Lastly, waste heat recycling thermal power plant (1000) captures for reuse, much of the waste heat that its own operation liberates, thus lowering its net energy utilization per unit of mechanical power produced (a.k.a., heat rate, Btu / kwhr). In the main embodiment of its use, waste heat recycling thermal power plant (1000) would be used as the driver for a mod driven mechanical device (1520), specifically an electrical generator. Deriving its source heat by intercepting the heat that would be rejected to the environment by an electrical power generating station's cooling device, and routing this heat to waste heat recycling thermal power plant (1000). Then converting this heat to mechanical power, and subsequently to electrical power. This would result in an improvement of the electrical power generating station's net electrical power generating capacity and fuel efficiency, while simultaneously reducing the quantity of thermal (and potentially chemical) pollution released to the environment.
Owner:KIRBY TIMOTHY MICHAEL +1

Stirling cycle transducer for converting between thermal energy and mechanical energy

The apparatus includes a housing, a compression chamber disposed in the housing and having at least a first interface operable to vary a volume of the compression chamber, an expansion chamber disposed in the housing and having a second interface operable to vary a volume of at least the expansion chamber, and a thermal regenerator in fluid communication with each of the compression chamber and the expansion chamber. The thermal regenerator is operable to alternatively receive thermal energy from gas flowing in a first direction through the regenerator and to deliver the thermal energy to gas flowing in a direction opposite to the first direction through the regenerator. The compression chamber, the expansion chamber, and the regenerator together define a working volume for containing a pressurized working gas. Each of the first and second interfaces are configured for reciprocating motion in a direction aligned with a transducer axis, the reciprocating motion being operable to cause a periodic exchange of working gas between the expansion and the compression chambers. In one aspect, at least one of the first and second interfaces includes a resilient diaphragm, and a cylindrical tube spring coupled between the diaphragm and the housing, the tube spring being configured to elastically deform in a direction generally aligned with the transducer axis in response to forces imparted on the tube spring by the diaphragm to cause the at least one of the first and second interfaces to have a desired natural frequency. In another aspect the apparatus includes a first heat exchanger in communication with the expansion chamber, a second heat exchanger in communication with the compression chamber, the thermal regenerator is disposed between the first and second heat exchangers, and each of the first and second heat exchangers are peripherally disposed within the housing with respect to the transducer axis and configured to receive working gas flowing to or from the respective chambers and to redirect the working gas flow through the regenerator.
Owner:ETALIM
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products