Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1005results about How to "More power" patented technology

Transceiver control with sleep mode operation

A transceiver which keeps circuitry associated with a receiver in a powered down state during periods when a Received Signal Strength Indicator (RSSI) indicates that a signal being received is below a pre-determined threshold level, and which begins to power up the transmitter as soon as it is determined that a packet being received requires a response. The RSSI signal represents the strength of any signal current being received, and if the RSSI signal falls below a given threshold level, digital circuitry associated with the back-end circuitry of the receiver system is disabled. If the RSSI signal rises above the threshold level, the digital circuitry of the receiver is enabled. A control circuit within the transceiver processes the packet as it is received to determine whether the packet requires a response. If it is determined that a response is necessary, the control circuit provides a control signal to the transmitter to power up the transmitter from a sleep mode even before the entire packet has been received and processed. The control circuit then continues to process the remainder of the packet as it is received while the transmitter powers up from the sleep mode. In this manner, the transmitter will become stabilized much earlier. Accordingly, the transceiver is able to respond more quickly than conventional devices and is thus able to increase response times and overall data exchange rates. Moreover, battery power of the transceiver is utilized more efficiently compared to devices which must continuously maintain the receiver and transmitter in fully powered modes.
Owner:TELXON INC

Thermal cycler for PCR

An instrument for performing highly accurate PCR employing an assembly, a heated cover and an internal computer. The assembly is made up of a sample block, a number of Peltier thermal electric devices and heat sink, clamped together. The sample block temperature is changed exclusively by the thermoelectric devices controlled by the computer. The sample block is of low thermal mass and is constructed of silver. The Peltier devices are designed to provide fast temperature excursions over a wide range. The heat sink has a perimeter trench to minimize edge losses and is adjacent to a continuously variable fan. A perimeter heater is used to improve the thermal uniformity across the sample block to approximately ±0.2° C. A heated platen pushes down onto the tube caps to apply a minimum acceptable force for seating the tubes into the block, ensuring good thermal contact with the block. The force is applied about the periphery of the tube caps to prevent distortion of the caps during thermal cycling. The platen is heated to provided thermal isolation from ambient conditions and to prevent evaporation from the surface of the sample into the upper portion of the sample tube. A control algorithm manipulates the current supplied to the thermoelectric coolers such that the dynamic thermal performance of the block can be controlled so that pre-defined thermal profiles for the sample temperature can be executed. The sample temperature is calculated instead of measured using a design specific model and equations. The control software includes calibration diagnostics which permit variation in the performance of thermoelectric coolers from instrument to instrument to be compensated for such that all instruments perform identically. The block / heat sink assembly can be changed to another of the same or different design. The assembly carries the necessary information required to characterize its own performance in an on-board memory device, allowing the assembly to be interchangeable among instruments while retaining its precision operating characteristics. The instrument has a graphical user interface. The instrument monitors the thermoelectric devices and warns of changes in resistance that may result in failure.
Owner:APPL BIOSYSTEMS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products