Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

387 results about "Plasma ignition" patented technology

Method for Stabilizing Plasma Ignition

A method for stabilizing plasma ignition in a continuous process conducted on a substrate, includes: applying a spike of RF power between an upper electrode and a lower electrode on which the substrate is placed, wherein the spike starts from zero power, jumps to a spike power, and then drops to a base power which is so low as to cause plasma ignition failure; and continuously applying RF power at the base power between the upper and lower electrode for a duration substantially longer than a duration of the spike to process the substrate. The spike is such that ignition failure is reduced.
Owner:ASM IP HLDG BV

Method and Apparatus of Providing Power to Ignite and Sustain a Plasma in a Reactive Gas Generator

ActiveUS20100219757A1Eliminating and minimizing riskBig spaceElectric discharge tubesElectric arc lampsReactive gasPlasma ignition
Described are methods and apparatuses, including computer program products, for igniting and / or sustaining a plasma in a reactive gas generator. Power is provided from an ignition power supply to a plasma ignition circuit. A pre-ignition signal of the plasma ignition circuit is measured. The power provided to the plasma ignition circuit is adjusted based on the measured pre-ignition signal and an adjustable pre-ignition control signal. The adjustable pre-ignition control signal is adjusted after a period of time has elapsed.
Owner:MKS INSTR INC

Method of improving surface flame resistnace of substrate

A method of improving surface flame resistance of a substrate is provided. A substrate is provided. An atmosphere pressure plasma process is performed on the surface of the substrate to form an inorganic film layer on the surface of the substrate, wherein a process gas of the atmosphere plasma process includes a flame resistance precursor, a carrier gas, and a plasma ignition gas. Particularly, the flame resistance precursor is selected from a siloxane compound, an inorganic alkoxide compound and a combination thereof. The siloxane compound has a formula of Si(OCnH2(n+1))4, n=1˜5, and the inorganic alkoxide compound has a formula of A(OCmH2m+1)4, where A represents Sn, Ti, Zr, Ce and m=2.
Owner:IND TECH RES INST

Apparatus and Method for Plasma Ignition with a Self-Resonating Device

Methods and apparatus for igniting a process plasma within a plasma chamber are provided. One or more self-resonating devices are positioned within a plasma chamber relative to a plasma generation volume within the plasma chamber. The plasma generation volume is defined by the plasma chamber. Each of the self-resonating devices generates an ignition plasma. The ignition plasmas cause a partial ionization of an ignition gas. The partially ionized ignition gas allows for ignition of a process plasma by applying an electric field to the plasma generation volume.
Owner:MKS INSTR INC

Up and down conversion systems for production of emitted light from various energy sources including radio frequency, microwave energy and magnetic induction sources for upconversion

Methods and systems for producing a change in a medium. A first method and system (1) place in a vicinity of the medium at least one upconverter including a gas for plasma ignition, with the upconverter being configured, upon exposure to initiation energy, to generate light for emission into the medium, and (2) apply the initiation energy from an energy source including the first wavelength λ1 to the medium, wherein the emitted light directly or indirectly produces the change in the medium. A second method and system (1) place in a vicinity of the medium an agent receptive to microwave radiation or radiofrequency radiation, and (2) apply as an initiation energy the microwave radiation or radiofrequency radiation by which the agent directly or indirectly generates emitted light in the infrared, visible, or ultraviolet range to produce at least one of physical and biological changes in the medium.
Owner:IMMUNOLIGTHT LLC +1

Method of forming a structure including carbon material, structure formed using the method, and system for forming the structure

Methods and systems for forming a structure including carbon material and structures formed using the method or system are disclosed. Exemplary methods include providing an inert gas to the reaction chamber for plasma ignition, providing a carbon precursor to the reaction chamber, forming a plasma within the reaction chamber to form an initially viscous carbon material on a surface of the substrate, wherein the initially viscous carbon material becomes carbon material, and treating the carbon material with activated species to form treated carbon material.
Owner:ASM IP HLDG BV

Plasma Generation Method, Cleaning Method, and Substrate Processing Method

A plasma generation method in a toroidal plasma generator that includes a gas passage having a gas entrance and a gas outlet and forming a circuitous path and a coil wound around a part of the gas passage includes the steps of supplying a mixed gas of an Ar gas and an NF3 gas containing at least 5% of NF3 and igniting plasma by driving the coil with a high-frequency power, wherein the plasma ignition step is conducted under a total pressure of 6.65-66.5 Pa.
Owner:TOKYO ELECTRON LTD

RF power control device for RF plasma applications

There is provided by this invention an improved rf power control device for plasma applications for optimization of the feedback control voltage in the presence of harmonic and non-harmonic spurious frequencies. In this system, an oscillator and mixer, similar to those normally used in radio receiver applications are placed at the sampled output of the solid state rf signal source used for plasma ignition. The sampled output is mixed to a low frequency and filtered to remove the spurious frequencies that is created in the non-linear plasma. In this way, the feedback power control essentially ignores the spurious frequencies. In this application, the oscillator and mixer do not interfere with other desirable system characteristics and effectively isolate the feedback control voltage from changes in plasma spurious content. This allows rf power to be delivered to the plasma with greater accuracy than would otherwise be possible with conventional power control device and methods.
Owner:AES GLOBAL HLDG PTE LTD

Gas distribution showerhead for semiconductor processing

We have developed a gas distribution showerhead assembly, for use in a semiconductor processing chamber, which can be easily cleaned, with minimal chamber downtime. The gas distribution showerhead assembly includes an electrode having openings therethrough, and a gas distribution plate which includes a plurality of through-holes for delivering processing gases into the semiconductor processing chamber. The gas distribution plate is bonded to a first, lower major surface of the electrode. A removable insert which fits into an opening in the electrode through which gas flows. Spacing between surfaces of the removable insert and surfaces of the electrode is adequate to permit gas flow, but inadequate for plasma ignition within the opening. The removable insert can be easily removed during cleaning of the gas distribution showerhead, permitting the holes in the gas distribution plate to be easily accessed from both sides of the gas distribution plate.
Owner:APPLIED MATERIALS INC

Plasma reactor and plasma ignition method using the same

A plasma reactor and a plasma ignition method using the same are disclosed. The disclosed plasma reactor includes at least one magnetic core having a transformer primary winding wound thereon, an AC power supply for supplying AC power to the transformer primary winding wound on the magnetic core, at least one plasma chamber body, at which the magnetic core is installed, to directly induce a voltage in the plasma chamber body through the magnetic core, thereby inducing induced electromotive force in the plasma chamber body, and at least one floating chamber connected to the plasma chamber body via an insulating region, the induced electromotive force from the plasma chamber body being indirectly transferred to the floating chamber. Ignition of plasma is generated in accordance with a voltage difference generated between, the plasma chamber body and the floating chamber, and the ignited plasma is supplied to a process chamber.
Owner:NEW POWER PLASMA CO LTD

System for plasma ignition by fast voltage rise

An improved system of igniting a plasma using a rapid voltage rise and thus causing ions that may be pre-existing to create secondary electron emission or the like is provided. In one embodiment, the voltage rise can be timed to be comparable to the transit time of the electrons across the plasma. It can also be arranged to achieve a voltage rise in less than 1000 microseconds, to result in a transition time that is less than one hundred times the transit time, to maximize the emission of secondary electrons, or even to merely result in collision energies ranging from 5 to 500 electron volts. The transition time can be controlled through an ignition control that may be programmable, may involve charging output storage devices, or may involve delayed switching to supply the increased voltage to the plasma after the storage elements have been more fully charged.< / PTEXT>
Owner:ADVANCED ENERGY IND INC

Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes

A showerhead diffuser apparatus for a CVD process has a first channel region having first plural independent radially-concentric channels and individual gas supply ports from a first side of the apparatus to individual ones of the first channels, a second channel region having second plural independent radially-concentric channels and a pattern of diffusion passages from the second channels to a second side of the apparatus, and a transition region between the first channel region and the second channel region having at least one transition gas passage for communicating gas from each first channel in the first region to a corresponding second channel in the second region. The showerhead apparatus has a vacuum seal interface for mounting the showerhead apparatus to a CVD reactor chamber such that the first side and supply ports face away from the reactor chamber and the second side and the patterns of diffusion passages from the second channels open into the reactor chamber. In preferred embodiments the supply ports, transition passages, and diffusion passages into the chamber do not align, and there is a special plasma-quenching ring in each of the second channels preventing plasma ignition within the channels in the showerhead methods and systems using the showerhead are also taught.
Owner:EUGENUS INC

RF power control device for RF plasma applications

There is provided by this invention an improved rf power control device for plasma applications for optimization of the feedback control voltage in the presence of harmonic and non-harmonic spurious frequencies. In this system, an oscillator and mixer, similar to those normally used in radio receiver applications are placed at the sampled output of the solid state rf signal source used for plasma ignition. The sampled output is mixed to a low frequency and filtered to remove the spurious frequencies that is created in the non-linear plasma. In this way, the feedback power control essentially ignores the spurious frequencies. In this application, the oscillator and mixer do not interfere with other desirable system characteristics and effectively isolate the feedback control voltage from changes in plasma spurious content. This allows rf power to be delivered to the plasma with greater accuracy than would otherwise be possible with conventional power control device and methods.
Owner:AES GLOBAL HLDG PTE LTD

Toroidal low-field reactive gas and plasma source having a dielectric vacuum vessel

Plasma ignition and cooling apparatus and methods for plasma systems are described. An apparatus can include a vessel and at least one ignition electrode adjacent to the vessel. A total length of a dimension of the at least one ignition electrode is greater than 10% of a length of the vessel's channel. The apparatus can include a dielectric toroidal vessel, a heat sink having multiple segments urged toward the vessel by a spring-loaded mechanism, and a thermal interface between the vessel and the heat sink. A method can include providing a gas having a flow rate and a pressure and directing a portion of the flow rate of the gas into a vessel channel. The gas is ignited in the channel while the remaining portion of the flow rate is directed away from the channel.
Owner:MKS INSTR INC

Plasma ignition for direct injected internal combustion engines

An apparatus and method for the creation, placement and control of an area of electrical ionization within an internal combustion engine combustion chamber. This area of electrical ionization is positioned so that all of the fuel being injected into the combustion chamber must pass next to or through the area of electrical ionization to ensure that combustion has been initiated for all of the fuel as it is injected. This area of electrical ionization can be kept on as long as it is necessary to insure that the all of the fuel that is injected into the combustion chamber can be completely combusted. An engine equipped with this electrical ionization device has its fuel economy enhanced by timely, controlled, and complete combustion of all of the fuel injected into its combustion chamber. Furthermore, the pollutant emissions of both oxides of nitrogen and unburned hydrocarbons are reduced dramatically. Further, cold starting capability of this engine is greatly enhanced by a major reduction in the time necessary for the engine to warm up and a major reduction of pollutants created by the engine during the warm-up period. Additionally, this method of combustion also allows the engine to operate at a higher speed (rpm) allowing an increase in peak power output.
Owner:JAYNE MICHAEL E

Toroidal low-field reactive gas and plasma source having a dielectric vacuum vessel

Plasma ignition and cooling apparatus and methods for plasma systems are described. An apparatus can include a vessel and at least one ignition electrode adjacent to the vessel. A total length of a dimension of the at least one ignition electrode is greater than 10% of a length of the vessel's channel. The apparatus can include a dielectric toroidal vessel, a heat sink having multiple segments urged toward the vessel by a spring-loaded mechanism, and a thermal interface between the vessel and the heat sink. A method can include providing a gas having a flow rate and a pressure and directing a portion of the flow rate of the gas into a vessel channel. The gas is ignited in the channel while the remaining portion of the flow rate is directed away from the channel.
Owner:MKS INSTR INC

Method and apparatus of providing power to ignite and sustain a plasma in a reactive gas generator

According to a first aspect, a power supply and a method of providing power for igniting a plasma in a reactive gas generator is provided that includes (i) coupling a series resonant circuit that comprises a resonant inductor and a resonant capacitor between a switching power source and a transformer, the transformer having a transformer primary and a plasma secondary; (ii) providing a substantially resonant AC voltage from the resonant capacitor across the transformer primary, thereby inducing a substantially resonant current within the transformer primary to generate the plasma secondary; and (iii) upon generation of the plasma secondary, the resonant inductor limiting current flowing to the switching power supply. According to another aspect, bipolar high voltage ignition electrodes can be used in conjunction with inductive energy coupling to aid in plasma ignition.
Owner:MKS INSTR INC

Plasma ignition device

A plasma ignition device is provided with a plasma ignition plug having an insulation member to insulate a center electrode from a ground electrode, and electric power supply circuits to apply high voltages to the plasma ignition plug. The plasma ignition device activates the gas in a discharge space of the insulation member into the plasma of a high temperature and a high pressure by the high voltage applied between the center electrode and the ground electrode and injects the same into an internal combustion engine. The electric power supply circuits are connected to the center electrode as an anode and to the ground electrode as a cathode.
Owner:DENSO CORP

Plasma igniter and ignition device for internal combustion engine

To provide a plasma igniter capable of generating a discharge such as a pulse streamer discharge in a large region even by application of a low voltage, implementing powerful ignition by pulse voltage application in two or more stages, improving an air-fuel ratio (A / F), and reducing a CO2 emission amount.A plasma igniter includes an igniter part having a combustion chamber, and a discharge part arranged in such a manner that its discharge tip end is exposed to the combustion chamber. The discharge tip end has a column-shaped anode, an annular cathode arranged to be a predetermined interval away from an anode tip end part, and an annular floating electrode arranged between the anode tip end part and the cathode.
Owner:NGK INSULATORS LTD

Method and apparatus of providing power to ignite and sustain a plasma in a reactive gas generator

According to a first aspect, a power supply and a method of providing power for igniting a plasma in a reactive gas generator is provided that includes (i) coupling a series resonant circuit that comprises a resonant inductor and a resonant capacitor between a switching power source and a transformer, the transformer having a transformer primary and a plasma secondary; (ii) providing a substantially resonant AC voltage from the resonant capacitor across the transformer primary, thereby inducing a substantially resonant current within the transformer primary to generate the plasma secondary; and (iii) upon generation of the plasma secondary, the resonant inductor limiting current flowing to the switching power supply. According to another aspect, bipolar high voltage ignition electrodes can be used in conjunction with inductive energy coupling to aid in plasma ignition.
Owner:MKS INSTR INC

Compact Electromagnetic Plasma Ignition Device

A quarter wave coaxial cavity resonator for producing corona discharge plasma from is presented. The quarter wave coaxial cavity resonator has a folded cavity made of opposing concentric cavity members that are nested together to form a continuous cavity ending in a aperture. A center conductor with a tip is positioned in the cavity. The folded cavity advantageously permits the coaxial cavity resonator to resonate at a lower operating frequency than an unfolded quarter wave coaxial cavity resonator of the same length. Embodiments of the quarter wave coaxial cavity resonator use narrower apertures to reduce radiative losses, and include center conductors that are reactive load elements, such as helical coils. When a radio frequency (RF) oscillation is produced in the quarter wave coaxial cavity resonator, corona discharge plasma is formed at the tip of the center conductor. The corona discharge plasma can be used to ignite combustible materials in combustion chambers of combustion engines.
Owner:WEST VIRGINIA UNIVERSITY

Furnace using plasma ignition system for hydrocarbon combustion

An apparatus and method for the creation, placement and control of an area of electrical ionization within an internal combustion engine combustion chamber or a fuel burner for a furnace is disclosed. A furnace includes a fuel source, a fuel burner, a plasma nozzle and igniter assembly, and the associated housing and flue structures. The plasma nozzle and igniter assembly is arranged so that the fuel sprayed out from the nozzle into the combustion area passes through or in close proximity to the area of plasma ionization. A fuel burner equipped with this electrical ionization device has its fuel efficiency enhanced by the complete and immediate combustion of substantially all of the fuel that passes through the area of plasma ionization. Exhaust gas recirculation using this system is also disclosed.
Owner:JAYNE MICHAEL E

Target of high-purity nickel or nickel alloy and its producing method

Provided is high purity nickel or nickel alloy target for magnetron sputtering having superior sputtering film uniformity and in which the magnetic permeability of the target is 100 or more, and this high purity nickel or a nickel alloy target for magnetron sputtering capable of achieving a favorable film uniformity (evenness of film thickness) and superior in plasma ignition (firing) even during the manufacturing process employing a 300 mm wafer. The present invention also provides the manufacturing method of such high purity nickel or nickel alloy target.
Owner:NIKKO MATERIAL

Laser Driven Sealed Beam Lamp

A method and apparatus for a sealed high intensity illumination device are disclosed. The device is configured to receive a laser beam from a laser light source. The device has a sealed chamber configured to contain an ionizable medium. The chamber has a substantially flat ingress window disposed within a wall of the integral reflective chamber interior surface configured to admit the laser beam into the chamber, a plasma sustaining region, a plasma ignition region, and a high intensity light egress window configured to emit high intensity light from the chamber. The chamber has an integral reflective chamber interior surface configured to reflect high intensity light from the plasma sustaining region to the egress window. There is a direct path of the laser beam from the laser light source through the lens and ingress window to the lens focal region.
Owner:EXCELITAS TECH

Method and apparatus for neutralization of ion beam using AC ion source

There is provided by this invention a unique ion source for depositing thin films on a substrate in a vacuum chamber that neutralizes the positive electric charges that develop on the substrate and vacuum chamber apparatus that may cause arcing and degradation of the film deposition. A power supply with a reversing voltage waveform is utilized that neutralizes the electric charge on the substrate and the vacuum chamber apparatus. A power supply applies an ac voltage to the anode of the ion source and a rectified ac voltage to the cathode. The ground terminal of the power supply is connected to the vacuum chamber. The rectifying circuit is comprised of zener diodes that clamp the voltage in the circuit from spikes during plasma ignition and a capacitor connected to negatively bias the cathode when there is no plasma discharge.
Owner:GENERAL PLASMA

Non-thermal plasma ignition arc suppression

ActiveUS20120112620A1Eliminates arcingReduces arcingSpark gapsEngine ignitionCombustion chamberEngineering
An igniter (20) of a corona ignition system emits a non-thermal plasma in the form of a corona (30) to ionize and ignite a fuel mixture. The igniter (20) includes an electrode (32) and a ceramic insulator (22) surrounding the electrode (32). The insulator (22) surrounds a firing end (38) of the electrode (32) and blocks the electrode (32) from exposure to the combustion chamber (28). The insulator (22) presents a firing surface (56) exposed to the combustion chamber (28) and emitting the non-thermal plasma. A plurality of electrically conducting elements (24) are disposed in a matrix (26) of the ceramic material and along the firing surface (56) of the insulator (22), such as metal particles embedded in the ceramic material or holes in the ceramic material. The electrically conducting elements (24) reduce arc discharge during operation of the igniter (20) and thus improve the quality of ignition.
Owner:FEDERAL MOGUL IGNITION

Plasma ignition system

A plasma ignition system has an electromagnetic noise reduction circuit in addition to a discharge power circuit, a plasma generating power circuit, a plasma ignition plug, a discharging wire and a plasma generating wire. The noise reduction circuit includes a first rectifier connected to the discharging wire, a second rectifier connected to the plasma generating wire, and a noise reducing capacitor connected in parallel to the second rectifier. The noise reduction circuit is disposed close to the ignition plug so that the noise reducing capacitor bypasses only high frequency noise currents generated when the ignition plug discharges.
Owner:DENSO CORP

Inductance coupling coil and plasma processing device adopting same

The invention discloses an inductance coupling coil which comprises a first coil branch circuit and a second coil branch circuit mutually connected in parallel, wherein the first coil branch circuit comprises an inner circle winding part, the second coil branch circuit comprises an outer circle winding part, and the first coil branch circuit also comprises an adjustable capacitor connected with the inner circle winding part in series. In addition, the invention also discloses a plasma processing device which comprises a reaction chamber, wherein the upper part of the reaction chamber is provided with a medium window, and the inductance coupling coil is arranged above the medium window; and the first end of the inductance coupling coil is connected with a radio-frequency power supply by a radio-frequency matcher, and the second end of the inductance coupling coil is grounded so as to obtain uniformly distributed plasma in the reaction chamber. The inductance coupling coil and the plasma processing device not only can generate the more uniformly distributed plasma at a stable electric discharge stage, but also can more easily realize plasma ignition at a plasma ignition stage.
Owner:BEIJING NAURA MICROELECTRONICS EQUIP CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products