Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

92results about How to "Light coupling" patented technology

Directional linear light source

An illumination apparatus includes a linear array of light emitting diode (LED) chips disposed on a support. A linear reflector assembly has a light coupling reflector portion and a one dimensional light collimation or focusing portion. The linear reflector assembly is secured to the support parallel with the linear array of LED chips. An encapsulant is disposed in the light coupling reflector portion of the linear reflector assembly and pots the LED chips. An elongate phosphor element is disposed over the encapsulant such that the light coupling reflector portion and the encapsulant enhance light coupling between the LED chips and the elongate phosphor element, and the one-dimensional light collimation or focusing portion one-dimensionally collimates or focuses light emitted by the combination of the LED chips and the elongate phosphor element.
Owner:GE LIGHTING SOLUTIONS LLC

Laser diode optical transducer assembly for non-invasive spectrophotometric blood oxygenation

A non-invasive near infrared spectrophotometric monitoring transducer assembly includes a housing member, which is adhered directly on a patient's skin. The housing member contains a prism coupled to a flexible and lightweight single core optical light guide, which provides a means of transferring narrow spectral bandwidth light from multiple distant laser diodes of different wavelengths by use of a multi-fiber optic light combining assembly. Different wavelengths are needed to monitor the level of blood oxygenation in the patient. The assembly also contains a planar light guide mounted on the prism located in the housing member, which light guide contacts the patient's skin when the housing member is adhered to the patient's skin. The light guide controls the spacing between the prism and the patient's skin, and therefore controls the intensity of the area on the patient's skin which is illuminated by the laser light. The housing member contains a photodiode assembly, which detects the infrared light at a second location on the skin to determine light absorption. The photodiode assembly is preferably shielded from ambient electromagnetic interference (EMI) by an optically transparent EMI attenuating window. This rigid window placed over the photodiode also provides a planar interface between the assembly and the skin, improving optical coupling and stability as well as reducing the capacitive coupling between skin and the photodiode resulting in further EMI attenuation. The housing may be associated with a disposable sterile hydrogel coated adhesive envelope, or pad, which when applied to the patient's skin will adhere the housing to the patient's skin. The transducer assembly will thus be reusable, and skin-contacting part of the device, i.e., the envelope or pad can be discarded after a single use. The assembly also includes a laser safety interlock means, which is operable to turn off the laser light output in the event that the assembly accidentally becomes detached from the patient's skin.
Owner:EDWARDS LIFESCIENCES CORP

Endoscope system

An endoscope system has an insertion portion and a control portion connected to a base end portion of the insertion portion. An illumination system includes a light guide having a front end positioned near the front end of the insertion portion and a rear end positioned rearward of the base end of the insertion portion, phosphors disposed in the light guide toward the front end thereof and an illumination light source which is positioned toward the rear end of the light guide and emits stimulating light exciting the phosphors.
Owner:FUJIFILM HLDG CORP +2

Light harvesting system employing microstructures for efficient light trapping

A light harvesting system employing a focusing array and a photoresponsive layer in which a plurality of microstructured areas is formed. Light received by the focusing array is injected transmissively into the photoresponsive layer through the microstructured areas. The injected light is retained in the photoresponsive layer by at least a total internal reflection and is propagated within the layer until it is substantially absorbed.
Owner:S V V TECH INNOVATIONS

Organic light emitting diode backlight inside LCD

InactiveUS20060109397A1Light coupling efficiencyMaximizes optical efficiencyDiodeNon-linear opticsLiquid-crystal displayPolarizer
A planar organic light emitting diode (OLED) light source is processed on one of the substrates of a liquid crystal display (LCD) and sealed pin-hole free such that LCD processes, including internal polarizer, can be carried out on OLED without affecting the integrity of OLED and LCD. Both devices are held in alignment and hermetaically sealed between two substrates thus forming an integrated device and on application of suitable voltages to these devices OLED generates light and efficiently couples the light to LCD to function efficiently as a full color display.
Owner:ORGANIC LIGHTING TECH

Optical ferrule

An optical connector and a manufacturing method are disclosed. The method for manufacturing an optical connector achieving a mechanical coupling comprises embedding a length of at least one optical fiber in a body to form an assembly. It also comprises to remove, at a first end of the assembly, a portion to provide a beveled surface on a corresponding first end of the optical fiber at which light is reflected for a side coupling. Also, at a portion of a side of the assembly near the first end, the method comprises creating an optical surface to provide a flat coupling surface for said side coupling. The method also comprises removing, at a second end of the assembly, a portion to provide a flat abutment surface including a corresponding second end of the at least one optical fiber. The method also comprises providing at the second end of the assembly a mating structure for precision connecting with a complementary connector in which an optical waveguide is end-coupled with at least one of the optical fiber.
Owner:REFLEX PHOTONIQUE REFLEX PHOTONICS

Optical fibers having a Surface Light Field Emulation (s-LiFE) segment and method of making the same

A modified optical fiber comprises one Surface Light Field Emulation (s-LiFE) segment, comprising a core; a cladding; and multiple controlled nanoscale diffusion centers to emit light through the side of the optical fibers. Optionally, the modified optical fiber has a coating. The nanoscale diffusion centers are physical geometric patterns or composition patterns in the cladding or the coating. The s-LiFE optical fiber is a member of an illumination system further comprising a light source. The method of making of said s-LiFE optical fiber comprises a fiber spooning step.
Owner:ENLIGHTING

Superlens and a method for making the same

A superlens for controlling the size and the phase of an electromagnetic beam that passes through it, and a method for independently controlling the horizontal and vertical focusing of the electromagnetic beam using the superlens is provided. The superlens comprises a vertically GRIN multi-layer structure with one or more horizontally curved sidewalls. The vertical focusing is controlled by varying the longitudinal thickness of the multi-layer structure. The horizontal focusing is controlled by varying the profile and the radius of curvature of the horizontally curved sidewalls. Varying the thickness and radius of curvature is done by etching. Also provided is a method for making the superlens.
Owner:HO SENG TIONG

Back-light assembly

ActiveUS20090109705A1Improve efficiencyUniform illumination of large area displayMechanical apparatusPlanar/plate-like light guidesDisplay deviceWaveguide
A back-light assembly for uniformly illuminating large area displays. The back-light assembly includes a uniformly thin waveguide, a reflector and a plurality of light sources evenly distributed along the display area between the waveguide and the reflector. Prismatic facets are provided along the lower surface of the waveguide for effectively coupling light emitted from light sources into the waveguide.
Owner:PAKHCHYAN EDWARD

Thermally assisted magnetic recording head and magnetic recording apparatus

A second waveguide is formed near a first waveguide for guiding light to the vicinity of a main pole of a thermally assisted magnetic recording head, and a portion of light propagated through the waveguide 1 is branched to the second waveguide. The light transmitting in the second waveguide is detected by a photodetector to detect an intensity of the light propagated through the first waveguide. In the magnetic recording apparatus, an intensity of a semiconductor laser is decreased when an amount of light incident to the photodetector is large and the intensity of the semiconductor laser is increased when the amount of light incident to the photodetector is small. By constituting a feedback loop as described above, the intensity of the light propagated through the first waveguide is kept constant.
Owner:HITACHI LTD

Receiver optical sub-assembly with reduced back reflection

The invention relates to a receiver optical sub-assembly (ROSA) for use in an optical transceiver to convert optical signals transmitted along an optical fiber into electrical signals for use by a host device. Conventionally, light exiting the optical fiber inside an optical coupler of the ROSA encounters a refractive index mismatched interface, e.g. fiber / air, causing a portion of the light to be reflected directly back into the fiber. To minimize back reflections at the interface with the optical fiber, an optical insert is provided having an index of refraction matching that of the optical fiber, thereby moving the mismatched interface remote from the end of the fiber to an interface of the optical insert and a lens, to which the optical insert is attached.
Owner:JDS UNIPHASE CORP

Light Emitting Module and Single-Fiber Two-Way Optical Communication Module

A light emitting module according to the present invention is characterized in that a light emitting device and a light-emission-side lens are held close to each other by a holding part extended from part of a stem in parallel with outgoing light of the light emitting device, and light emitted from the light emitting device is refracted. A single-fiber two-way optical communication module according to the present invention has the light emitting module and, in addition, collimate lenses close to an optical fiber and a light receiving device, and is characterized in that splitting of light to a light receiving module or coupling of light from the light emitting module is performed with parallel rays. Each of the collimate lenses condenses the parallel rays to an incident / outgoing end face of the optical fiber, condenses the parallel rays to a light receiving face of the light receiving device, and outputs, as parallel rays, outgoing light from the light emitting module.
Owner:NTT ELECTORNICS CORP

Laser diode optical transducer assembly for non-invasive spectrophotometric blood oxygenation

A non-invasive near infrared spectrophotometric monitoring transducer assembly includes a housing member, which is adhered directly on a patient's skin. The housing member contains a prism coupled to a flexible and lightweight single core optical light guide, which provides a means of transferring narrow spectral bandwidth light from multiple distant laser diodes of different wavelengths by use of a multi-fiber optic light combining assembly. Different wavelengths are needed to monitor the level of blood oxygenation in the patient. The assembly also contains a planar light guide mounted on the prism located in the housing member, which light guide contacts the patient's skin when the housing member is adhered to the patient's skin. The light guide controls the spacing between the prism and the patient's skin, and therefore controls the intensity of the area on the patient's skin which is illuminated by the laser light. The housing member contains a photodiode assembly, which detects the infrared light at a second location on the skin to determine light absorption. The photodiode assembly is preferably shielded from ambient electromagnetic interference (EMI) by an optically transparent EMI attenuating window. This rigid window placed over the photodiode also provides a planar interface between the assembly and the skin, improving optical coupling and stability as well as reducing the capacitive coupling between skin and the photodiode resulting in further EMI attenuation. The housing may be associated with a disposable sterile hydrogel coated adhesive envelope, or pad, which when applied to the patient's skin will adhere the housing to the patient's skin. The transducer assembly will thus be reusable, and skin-contacting part of the device, i.e., the envelope or pad can be discarded after a single use. The assembly also includes a laser safety interlock means, which is operable to turn off the laser light output in the event that the assembly accidentally becomes detached from the patient's skin.
Owner:EDWARDS LIFESCIENCES CORP

Organic light emitting display device

An organic light emitting display (OLED) device that can improve light coupling efficiency by causing laterally emitted light emitted from an organic light emitting layer to travel in a direction in which an image is formed, resulting in reduced color mixing between pixels by reducing the leakage of internal light. The OLED device includes a substrate, a first electrode arranged on the substrate, a light scattering layer arranged on the substrate and covering a portion of the first electrode and having an opening exposing a portion of the first electrode, a second electrode arranged on the light scattering layer and within the opening facing the first electrode and an organic light emitting layer arranged within the opening between the first electrode and the second electrode.
Owner:SAMSUNG DISPLAY CO LTD

Optical grating coupling structure

The invention relates to a grating coupler comprising: —an optical substrate arranged to transfer a light beam, and—a diffraction grating arranged on, or imbedded in, the surface of said optical substrate, said diffraction grating comprising diffraction grating elements comprising each a coating arranged asymmetrically on said diffraction grating elements. The grating coupler is further arranged to satisfy the condition: (n1×sin(IαI)+η2) / λ×P>1, wherein n1 is the refractive index of the optical medium to the incident light side of the diffraction grating elements, n2 is the refractive index of the optical medium to the diffracted light side of the diffraction grating elements, lal the absolute value of the incident angle of the light beam incident on the grating coupler λ is the vacuum wavelength of the diffracted light, and P is the period of the diffraction grating elements.
Owner:CSEM CENT SUISSE DELECTRONIQUE & DE MICROTECHNIQUE SA RECH & DEV

Generating optical pulses via a soliton state of an optical microresonator

A light pulse source (100), being adapted for generating repetitive optical pulses, comprises a continuous wave (cw) laser (10) being arranged for providing cw laser light, an optical microresonator (20) being made of a resonator material, which has a third order (Kerr) nonlinearity and an anomalous resonator dispersion, wherein the cw laser (10) is arranged for coupling the cw laser light into the optical microresonator (20), which, at a predetermined relative detuning of the cw laser (10) and the optical microresonator (20), is capable of including a light field in a soliton state, wherein soliton shaped pulses can be coupled out of the optical microresonator (20) for providing the repetitive optical pulses, and a tuning device (30) being arranged for creating and maintaining the predetermined relative detuning of the cw laser (10) and the optical microresonator (20) based on a tuning time profile being selected in dependency on a thermal time constant of the optical microresonator (20) such that the soliton state is achieved in a thermal equilibrium state of the optical microresonator (20). Furthermore, a method of generating repetitive optical pulses is described based on soliton shaped pulses coupled out of an optical microresonator (20) is described.
Owner:ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Organic electroluminescent display device and method of producing the same

An organic electroluminescent display device and a method of producing the same are provided. The organic electroluminescent display device includes: a substrate; and an organic electroluminescent unit formed on a surface of the substrate and including a first electrode, an organic layer and a second electrode sequentially deposited on the substrate, in which the organic electroluminescent display device includes a diffraction grating layer having low refractive gratings and high refractive gratings alternately formed parallel to the substrate, and a high refractive layer formed on the diffraction grating layer interposed between the substrate and the first electrode. According to the organic electroluminescent display device, the light coupling efficiency can be increased due to minimized voids and unevenness generated in the formation of a diffraction grating layer, optical losses due to a first electrode can be prevented due to a high refractive layer interposed between the diffraction grating layer and the first electrode to focus light distribution on the high refractive layer, and the light coupling efficiency can be maximized due to increased light distribution in the diffraction grating layer.
Owner:SAMSUNG DISPLAY CO LTD

Depth-of-interaction scintillation detectors

The invention disclosed herein relates to a scintillation detector for registering the position of gamma photon interactions, an comprises an array of two or more elongated first and second scintillation crystal elements connected together along their respective long sides, and an array of discrete photosensitive areas disposed on a common substrate of a solid-state semiconductor photo-detector. The array of first and second scintillation crystal elements have proximal output windows optically coupled to the array of discrete photosensitive areas in a one-to-one relationship. The invention may be characterized in that the first and second scintillation crystal elements include a rooftop portion at their distal ends, wherein the rooftop portion optically couples one of the first and second scintillation crystal elements to the other and is configured to reflect and transmit light resulting from a gamma photon interaction from one of the first and second scintillation crystal elements to the other.
Owner:ZECOTEK IMAGING SYST PTE

Optical coupler for a light emitting device with enhanced output brightness

A light source is described where the light emitted by a solid-state light emitting device such as an LED is coupled into an optical waveguide such as an optical fiber. A highly reflective coupler (reflector) is disposed around the LED and a segment of the waveguide adjacent the LED. Light emitted from the LED that falls outside of the numerical aperture of the waveguide leaks out of the waveguide, but is reflected back to the waveguide by the reflector. The reflected light is re-reflected or scattered by the LED or the substrate the LED is mounted on, and the re-reflected or scattered light that falls within the numerical aperture of the waveguide is coupled into the waveguide. As a result, light coupling efficiency is increased and the output brightness of the light at the other end of the fiber is enhanced.
Owner:YLX INC

Mesa-Type Photodetectors With Lateral Diffusion Junctions

The present invention relates to a stable mesa-type photodetector with lateral diffusion junctions. The invention has found that without resorting to the complicated regrowth approach, a simple Zn diffusion process can be used to create high-quality semiconductor junction interfaces at the exposed critical surface or to terminate the narrow-bandgap photon absorption layers. The invention converts the epi material layers near or at the vicinity of the etched mesa trench or etched mesa steps into a different dopant type through impurity diffusion process. Preferably the diffused surfaces are treated with a subsequent surface passivation. This invention can be applied to both top-illuminating and bottom-illuminating configurations.
Owner:LUMENTUM OPERATIONS LLC

Projection lighting apparatus for marking and demarcation

A projection lighting apparatus is disclosed for marking and demarcation applications in airports, waterways, and industrial environments. The lighting apparatus comprises a plurality of high intensity LEDs with their output coupled to the input ends of a plurality of optical fibers. The output ends of the optical fibers are packaged to form a desired illumination pattern. The illumination pattern is projected onto the target surface through a secondary optical system for marking and demarcation enhancement.
Owner:BWT PROPERTY

Thermally Assisted Magnetic Recording Head And Magnetic Recording Apparatus

A thermally assisted magnetic recording head includes a flying slider, a magnetic field generation device mounted on the flying slider, a first waveguide disposed near the magnetic field generation device for guiding incident light from a top surface of the flying slider on a side of the flying slider toward an air bearing bottom surface of the flying slider, an optical near-field generator disposed at an emission end of the first waveguide, a second waveguide which is separate from the first waveguide and which is spaced from and coupled to the first waveguide at a distance of no greater than a light wavelength, and a first optical detector for detecting the intensity of light propagating in the second waveguide. The first waveguide and the second waveguide are disposed so as to extend in a direction substantially perpendicular to the air bearing bottom surface of the flying slider.
Owner:HITACHI LTD

Linear Fiber Array Mount To a Spectrometer

A coupler for coupling a linear fiber array to a spectrometer is provided, the coupler having a tube, a linear fiber bundle array inserted through the tube, an alignment mechanism for aligning the linear fiber bundle array with a slit on the spectrometer, and a locking mechanism for locking the linear fiber bundle array to the tube. Further, a method for coupling a linear fiber array to a spectrometer is provided, the method having the steps of inserting a linear fiber bundle array through a tube, aligning the linear fiber bundle array with a slit on the spectrometer, and locking the linear fiber bundle array to the tube once it is aligned with the slit on the spectrometer.
Owner:LAMBDA SOLUTIONS

High efficiency optical coupler

An optical coupling device enabling spherical or hemispherical light sources to be more fully utilized by gathering more of the emitted radiation and reducing the angle of emission. The optical coupling device includes a first conic reflector having an aperture at the first conic reflector vertex; a second conic reflector coaxial with the first conic reflector and opening toward the first conic reflector; a light source positioned at the second conic reflector vertex; and a negative element located at the aperture for reducing the numerical aperture of the light emitted from the optical coupling device. The optical coupling device may include a refractive medium between the first and second conic reflectors. The present invention provides for improved efficiencies when transferring or coupling optical energy into additional optical systems, and may be used with solid state light as well as conventional sources.
Owner:VENTURA MFG1 LLC

Bi-directional transceiver module based on silicon optic bench

A bi-directional transceiver, integrated module based on a silicon optical bench is provided, which comprises at least a laser diode, at least a signal detector, at least a thin film filter, at least an optical lens, an optical fiber and an SiOB. As the optical signal of specific wavelength can be reflected or inserted by thin film filter, the module has functions of a wavelength division multiplexer and a bi-direction transceiver. Furthermore, the optical lens improves the coupling efficiency between the laser diode and the optical fiber. On the other hand, a plurality of optical elements are integrated on the same SiOB. Hence, only a single optical fiber is used and optical signals of multiple wavelengths can be handled simultaneously.
Owner:FOCI FIBER OPTIC COMM

Organic electroluminescent display device and method for manufacturing the same

An organic EL display device, and a manufacturing method thereof, including a rear substrate, and an organic EL portion formed on a surface of the rear substrate. The organic EL portion includes a first electrode, an organic layer, and a second electrode sequentially stacked, and a nano-porous layer and a highly refractive layer are interposed between the rear substrate and the first electrode.
Owner:SAMSUNG DISPLAY CO LTD

Organic laser device

To provide a small and lightweight organic laser device which can be manufactured in a reproductive manner and from which laser light with a desired wavelength can be obtained. A first substrate provided with a light-emitting element having a light-emitting layer between a pair of electrodes and a second substrate provided with a laser medium including a laser dye face each other and one of the pair of electrodes, which is placed between the light-emitting layer and the laser medium, has a light transmitting property. With such a structure, a laser device with which a laser medium and a light source are integrated can be provided.
Owner:SEMICON ENERGY LAB CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products