Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

665 results about "Scintillation crystals" patented technology

Scintillation crystals are used in detectors to convert X-rays or Gamma rays into light pulses that are subsequently detected by either a photomultiplier tube (PMT) or a photodiode (SiPM).

Multiplexing readout scheme for a gamma ray detector

A method for producing a PET image of a tissue using a PET scanner, the scanner comprising a plurality of scintillation crystals (70X/75X) and a plurality of detectors (71X/76X). The method comprises forming a first crystal group (160X) including a first subset of the plurality of crystals; forming a second crystal group (164X) including a second subset of the plurality of crystals, wherein crystals comprising the first crystal group (160X) are different from crystals comprising the second crystal group (164X); converting a first beam (120) striking one or more crystals of the first crystal group (70X/160X) to a first electrical signal (94); converting a second beam striking one or more crystals of the second crystal group (75X/164X) to a second electrical signal (98), wherein the second beam is scattered from the first beam; determining one or both of a first and a second timing relationship, wherein the first timing relationship (Δt2) is a time interval between a value of the first electrical signal (94) and a time reference (t1), and the second timing relationship (Δt3) is a time interval between a value of the second electrical signal (98) and the time reference (t1); correcting the second electrical signal (98) to produce a corrected second electrical signal using a correction factor derived from at least one of the first and the second timing relationships to compensate for energy in the second signal scattered from the first signal; and creating an image of the tissue (12) using the corrected second electrical signal.
Owner:GENERAL ELECTRIC CO

Positron emission tomography detector for multilayer scintillation crystal

A positron emission tomography detector for a multilayer scintillation crystal comprises a plurality of layers of scintillation crystals, a photoelectric detector system and an algorithm system, wherein the multilayer scintillation crystals comprises n layers of array scintillation crystals and m layers of continuous scintillation crystals, both n and m are integers which are greater than or equal to 1, the sum of n and m is smaller than or equal to 10, the array scintillation crystals are formed by arraying strip-type scintillation crystals along the width and length directions, the continuous scintillation crystals are scintillation crystals which have uncut inner parts, the array scintillation crystals and the continuous scintillation crystals are sequentially coupled along the height direction of the strip-type scintillation crystals to form the multilayer scintillation crystals, and the bottoms of the continuous scintillation crystals are coupled with the photoelectric detector system. The positron emission tomography detector can more accurately obtain the position and the time of energy deposition of gamma photon in the scintillation crystal, and has higher detection efficiency of the gamma photon, the spatial resolution, the time resolution and the flexibility of a positron emission tomographic imaging system can be improved when the positron emission tomography detector is applied to the positron emission tomographic imaging system, and further, the imaging quality of the system can be improved.
Owner:RAYCAN TECH CO LTD SU ZHOU

Scintillation crystal array detecting device

The invention relates to a scintillation crystal array detecting device, which comprises a crystal array, M*N light guides, an optical fiber splitter unit, an optical fiber merging unit and an opticalfiber signal reading unit, wherein the crystal array comprises M*N crystals for generating fluorescence photons, M represents the number of rows, and N represents the number of columns; each light guide is connected with the surface of a crystal to collect and transmit the fluorescence photons generated by the crystal; the optical fiber splitter unit is used for splitting fluorescence photons transmitted by each light guide into two paths of optical fibers which are a row transmission optical fiber and a column transmission optical fiber to transmit the fluorescence photons; the optical fibermerging unit is used for fusing row transmission optical fibers corresponding to light guides connected with the same row of crystals into a row optical fiber and fusing column transmission optical fibers corresponding to light guides connected with the same column of crystals into a column optical fiber; and the optical fiber signal reading unit is connected with the row optical fibers and the column optical fibers to recognize the numbers of the rows in which the row optical fibers transmitting the fluorescence photons are and the numbers of the columns in which the column optical fibers transmitting the fluorescence photons are to further determine the position of scintillation crystals and detect the total quantity and energy of received fluorescence photons. The device is reduced incost, volume and weight and has high position resolution and fluorescence collection efficiency.
Owner:PEKING UNIV

Photoelectric converter, detector and scanning equipment

The invention relates to a photoelectric converter, a detector and scanning equipment. The photoelectric converter comprises a silicon photomultiplier array and a light guide coupled with the silicon photomultiplier array, wherein the silicon photomultiplier array comprises i*j silicon photomultipliers spliced on a horizontal plane, and the i and the j are both integers greater than or equal to 2. The detector comprises a scintillation crystal, an electronic system, a light guide and silicon photomultipliers. The scanning equipment comprises a detection device and a frame, wherein the detection device comprises the detector, and the detector comprises the photoelectric converter. According to the photoelectric converter, the detector and the scanning equipment, a photoelectric conversion scheme of the photoelectric silicon photomultipliers is mainly employed, the silicon photomultipliers have small volumes and are closely arranged, the silicon photomultipliers in proper dimensions and in proper quantity are matched with the light guide in proper shape, a PET detector with high spatial resolution can be established, so the spatial resolution of the whole PET system can be improved, the PET detector having DOI and TOF performances is proper to establish, application to PET/MRI can be realized, and low cost is further realized.
Owner:RAYCAN TECH CO LTD SU ZHOU

Conical scintillation crystal module and processing method thereof

ActiveCN102129082AHigh sensitivityReduce the problem of missing collectionX/gamma/cosmic radiation measurmentImaging qualityImage resolution
The invention discloses a conical scintillation crystal module and a processing method thereof. The stereo shape of the appearance of the scintillation crystal module is of a conical table, the top surface of the conical table is mutually parallel to the bottom surface, the top surface is rectangular, and the area of the top surface is greater than that of the bottom surface. The scintillation crystal module is formed by splicing and bonding m*n crystal strips. The processing method comprises the following steps of: calculating the size of each crystal strip according to the size of the conical scintillation crystal module and the array number of the crystal strips, assembling and polishing the crystal strips obtained by processing a batch of crystal strip blanks, and processing the crystal strips into the conical scintillation crystal module as required. By designing the conical scintillation crystal module directly coupled with a photoelectric conversion device, the advantages of improving the sensitivity of a medical imaging system, reducing the problems on data acquisition deletion and improving the imaging quality of the system can be achieved under the condition that the energy resolution and the time resolution of the system are not affected.
Owner:NANJING RAYCAN INFORMATION TECH

Methods for preparing anhydrous lithium iodide and scintillation crystal doped with lithium iodide

The invention discloses a method for preparing an anhydrous lithium iodide, comprising the following operation steps of: dehydrating the lithium iodide water solution to the lithium iodide powders containing 0.5-1 crystal water; and subsequently carrying out heating and dehydration treatment in vacuum to obtain the anhydrous lithium iodide. The invention also discloses a method for preparing a scintillation crystal doped with the lithium iodide, comprising the following operation steps of: dehydrating the lithium iodide water solution to the lithium iodide powders containing 0.5-1 crystal water; mixing the lithium iodide powder with the doped compound; subsequently carrying out heating and dehydration treatment in vacuum; and subsequently carrying out crystal growth under a vacuum state by adopting a Bridgman method, thus obtaining the scintillation crystal doped with the lithium iodide. The method for preparing the anhydrous lithium iodide has simple operation and no environmental pollution and is easy for large-scale industrial production; the method for preparing the scintillation crystal doped with the lithium iodide has simple process, is not easy to be oxidized at high temperature during the preparation process and can produce the high-quality scintillation crystal doped with the lithium iodide in batches.
Owner:上海新漫传感科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products