Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1280 results about "Fiber array" patented technology

Fiber array. •Fiber array is an essential component used in the WDM systems to connect optical fiber and AWG chip. •Our precision processing technology, which we have developed for years, provides high fidelity, quality and core pitch accuracy. •High quality Seikoh-Giken connectors are used at the end of fibers.

Apparatus and method for combining optical waveguide and optical fiber

An apparatus and a method for combining an optical waveguide and optical fibers are provided. The apparatus includes an apparatus for combining optical fibers with an optical waveguide device, including a guide rail portion for alignment including guide rails for alignment spaced apart from each other by a predetermined distance, on a flat substrate, an optical fiber array portion put on the guide rail portion for alignment when the optical fibers are combined with the optical waveguide device, including an array of grooves for arranging the optical fibers spaced apart from each other by a predetermined distance in an array pattern, and including guide grooves for alignment having a concavo-convex relationship with the guide rail portion for alignment, and an optical waveguide device chip put on the guide rail portion when the optical fibers are combined with the optical waveguide, including the optical waveguide connected to the optical fibers of the optical fiber array portion, and including guide grooves for alignment spaced apart from each other by the same distance as that by which the rails of the guide rail portion are spaced apart from each other and having a concavo-convex relationship with the guide rail portion for alignment, to the outside of an optical waveguide area in which the cores of the optical fibers of the optical fiber array portion respectively coincide with those of the optical waveguide. According to the present invention, a light source and a photodetector (required for active alignment) are not necessary. A complicated alignment process of performing an alignment with respect to an alignment axis having six degrees of freedom with submicron precision is not necessary. Also, it is possible to save time and money when attaching the optical fibers to the optical waveguide device chip.
Owner:SAMSUNG ELECTRONICS CO LTD

Drive control system for a fiber-based plasma display

A full color fiber plasma display device includes two glass plates sandwiched around a top fiber array and a bottom fiber array. The top and bottom fiber arrays are substantially orthogonal and define a structure of the display, with the top fiber array disposed on a side facing towards a viewer. The top fiber array includes identical top fibers, each top fiber including two sustain electrodes located near a surface of the top fiber on a side facing away from the viewer. A thin dielectric layer separates the sustain electrodes from the plasma channel formed by a bottom fiber array. The bottom fiber array includes three alternating bottom fibers, each bottom fiber including a pair of barrier ribs that define the plasma channel, an address electrode located near a surface of the plasma channel, and a phosphor layer coating on the surface of the plasma channel, wherein a luminescent color of the phosphor coating in each of the three alternating bottom fibers represents a subpixel color of the plasma display. Each subpixel is formed by a crossing of one top fiber and one corresponding bottom fiber. The plasma display is hermetically sealed with a glass frit. The sustain and address electrodes are brought out through the glass frit for direct connection to a drive control system.
Owner:MOORE CHAD BYRON

Method and apparatus for providing optoelectronic communication with an electronic device

An optoelectronic assembly for an electronic system includes a transparent substrate having a first surface and an opposite second surface, the transparent substrate being thermally conductive and being metallized on the surface. A support electronic chip set is configured for at least one of providing multiplexing, demultiplexing, coding, decoding and optoelectronic transducer driving and receive functions and is bonded to the second surface of the transparent substrate. A first substrate having a first surface and an opposite second surface, is in communication with the transparent substrate via the metallized second surface and support chip set therebetween. A second substrate is in communication with the second surface of the first substrate and is configured for mounting at least one of data processing, data switching and data storage chips. An optoelectronic transducer is in signal communication with the support electronic chip set; and an optical signaling medium defined with one end having an optical fiber array aligned with the optoelectronic transducer is substantially normal to the first surface of the transparent substrate, wherein an electrical signal from the support electronic chip set is communicated to the optoelectronic transducer via the metallized second surface of the transparent substrate, and wherein the support electronic chip set and the optoelectronic transducer share a common thermal path for cooling.
Owner:IBM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products