Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

69 results about "Hyaline cartilage" patented technology

Hyaline cartilage is the glass-like (hyaline) but translucent cartilage found on many joint surfaces. It is also most commonly found in the ribs, nose, larynx, and trachea. Hyaline cartilage is pearl-grey in color, with a firm consistency and has a considerable amount of collagen. It contains no nerves or blood vessels, and its structure is relatively simple.

Cartilage repair implant with soft bearing surface and flexible anchoring device

InactiveUS9050192B2Strong and more permanent fixationSoft and bendableJoint implantsHip jointsCartilage repairSurgical implant
A surgical implant for replacing hyaline cartilage in a knee or other articulating synovial joint has an anchoring side on one side of the implant adapted for fixing the implant to one of the bones in the joint, and a bearing surface on the opposite side of the implant for lubricious rubbing and sliding contact with another bone in the joint. The anchoring side can be configured with an irregular surface for tissue ingrowth. The bearing side can include hydrogel. The implant can be rolled up from an original shape and surgically inserted by arthroscopic means, and opens into its original shape when released inside the joint.
Owner:FORMAE

Implants for replacing hyaline cartilage, with hydrogel reinforced by three-dimensional fiber arrays

ActiveUS20070224238A1Little and delayBone implantTissue regenerationTest sampleFiber array
Implants with hydrogel layers reinforced by three-dimensional fiber arrays can replace hyaline cartilage. Such implants should replace an entire cartilage segment, rather than creating a crevice around a plug, so these implants must be thin and flat, they must cover large areas, the tips of any tufts or stitches must not reach the hydrogel surface, and they must be flexible, for arthroscopic insertion. The use of computerized stitching machines to create such arrays enables a redesigned and modified test sample to be made with no delays, and no overhead or startup costs. This provides researchers with improved tools for making and testing implants that will need to go through extensive in vitro, animal, and human testing before they can be approved for sale and use. Fiber-reinforced hydrogels also can be secured to strong shape-memory rims, for securing anchoring to bones.
Owner:FORMAE

Hydrogel implants for replacing hyaline cartilage, with charged surfaces and improved anchoring

Hydrogel devices for surgical implantation to replace damaged cartilage in a mammalian joint (such as a knee, hip, shoulder, etc.) are disclosed, with one or more of the following enhancements: (1) articulating surfaces that have been given negative surface charge densities that emulate natural cartilage and that interact with positively charged components of synovial fluid; (2) anchoring systems with affixed pegs that will lock into accommodating receptacles, which will be anchored into hard bone before the implant is inserted into a joint; (3) a three-dimensional reinforcing mesh made of strong but flexible fibers, embedded within at least a portion of the hydrogel.
Owner:MANSMANN KEVIN A

Glue for cartilage repair

The invention is directed toward a sterile cartilage defect implant material comprising milled lyophilized allograft cartilage pieces ranging from 0.01 mm to 1.0 mm in size in a bioabsorbable carrier taken from a group consisting of sodium hyaluronate, hyaluronic acid and its derivatives, gelatin, collagen, chitosan, alginate, buffered PBS, Dextran or polymers with allogenic chondrocytes or bone marrow cells in an amount exceeding the natural occurrence of same in hyaline cartilage and adding a cell growth additive.
Owner:MUSCULOSKELETAL TRANSPLANT FOUND INC

Cartilage repair methods

The present application discloses methods for repairing hyaline cartilage defects. The methods comprise a combination of introducing autologous bone mesenchymal stem cells to a joint, and applying to the joint a membrane comprising a polyester entangled with a polysaccharide. In some aspects, the bone mesenchymal stem cells are mesenchymal stem cells originating in bone underlying the joint. In these aspects, contact between the joint and the mesenchymal stem cells can be effected by introducing apertures through the bone using standard surgical techniques such as microfracture, abrasion, or drilling. Cartilage which forms in response to application of these methods is hyaline cartilage rather than fibrocartilage.
Owner:ISTO TECH II LLC

Multi-part implants for combined repair of hyaline and meniscal cartilage in joints

InactiveUS20070293947A1Minimize tissue damageRoom to workAnkle jointsLigamentsUltimate tensile strengthPolymer
Surgical implants use combined anchoring components to replace meniscal or labral cartilage, in ways that provide strong reinforcement while emulating natural anchoring. An arc-shaped polymer segment is coupled to an anchoring rim made of shape-memory material, which will fit into a groove prepared in a bone surface using specialized tools. A fabric material or anchoring ring is provided above the polymer segment, and can be secured to a knee capsule or other soft tissue. Fabric strips can extend out from the tips of the polymer arc, for additional anchoring. An additional polymer segment can also be provided to replace a hyaline cartilage layer, with a porous bottom surface to promote tissue ingrowth. By using peripheral rather than central anchoring, such implants can be given very high strength and stbility, to last for multiple decades.
Owner:MANSMANN KEVIN A

Resilient interpositional arthroplasty device

ActiveUS20140316526A1Preserve joint motionsRemoving dysfunctionPharmaceutical delivery mechanismJoint implantsArticular surfacesAnatomical structures
This disclosure is directed to a resilient interpositional arthroplasty implant for application into a joint to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional inflatable or compliant polymer arthroplasties that promote anatomic joint motion.
Owner:IORTHOPEDICS INC

Resilient interpositional hip arthroplasty device

This disclosure is directed to a resilient interpositional arthroplasty implant for application into joints to pad cartilage defects, cushion joints, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. Rather than using periosteal harvesting for cell containment in joint resurfacing, the walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability to avoid extrusion or dislocation. Appendages of the implant may repair or reconstruct tendons or ligaments, and an interior of the implant that is inflatable may accommodate motions which mimic or approximate normal joint motion.
Owner:GROTZ R THOMAS

Resilient medically inflatable interpositional arthroplasty device

This disclosure is directed to a resilient interpositional arthroplasty implant for application into joints to pad cartilage defects, cushion joints, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. Rather than using periosteal harvesting for cell containment in joint resurfacing, the walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability to avoid extrusion or dislocation. Appendages of the implant may repair or reconstruct tendons or ligaments, and an interior of the implant that is inflatable may accommodate motions which mimic or approximate normal joint motion.
Owner:GROTZ R THOMAS

High-strength hydrogel based on three-dimensional network support and preparation method of high-strength hydrogel

The invention provides high-strength hydrogel based on a three-dimensional network support and a preparation method of the high-strength hydrogel. The high-strength hydrogel is formed by interfingering and in-situ polymerization of hydrogel and the three-dimensional network support. The method comprises the following steps: immersing the three-dimensional network support in a hydrogel prepolymer solution; enabling the hydrogel to penetrate in the three-dimensional network support after in-situ polymerization forming, and enabling an interpenetrating polymer network to be formed between the hydrogel and the support by polymerizing and winding of macromolecule long chains through support meshes. The high-strength hydrogel based on the three-dimensional network support has the advantages thatthe prepared high-strength hydrogel has excellent wear resistance and mechanical strength resisting various direction forces such as stretching, compression and shearing, and a severe biomechanical property requirement to a replaced body in a physiological environment of a using portion can be met; and the tribological property of the surface of a complex is regulated and controlled effectively,the interfacial friction coefficient is reduced, and simulation to a self-lubricating function of a hyaline cartilage of a joint is realized. The method has simple operation steps, and is low in energy consumption, the materials have good biological compatibility, and the high-strength hydrogel can be produced on the large scale.
Owner:SICHUAN UNIV

Resilient knee implant and methods

ActiveUS8771363B2Preserve joint motionsRemoving dysfunctionJoint implantsKnee jointsArticular surfacesAnatomical structures
This disclosure is directed to a resilient interpositional arthroplasty implant for application into a knee joint to pad cartilage defects, cushion a joint, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. Rather than using periosteal harvesting for cell containment in joint resurfacing, the walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability to avoid extrusion or dislocation. Appendages of the implant may repair or reconstruct tendons or ligaments, and an interior of the implant that is inflatable may accommodate motions which mimic or approximate normal joint motion.
Owner:IORTHOPEDICS INC

Novel chondrocyte epimatrix membrane and preparation method thereof

InactiveCN102188748ANo biological immunogenicitySuitable for growthProsthesisAdditive ingredientBlood vessel
The invention discloses a novel chondrocyte epimatrix membrane and a preparation method thereof. The membrane contains cell epimatrix ingredients which have bioactivity and cell activity, wherein the cell epimatrix comprises the following main ingredients in percentage by weight: 80 to 95 percent of bionic type II collagen in an acellular cartilage matrix and 10 to 20 percent of hyaluronic acid, 10 to 20 percent of aminopolysaccharide and the like which serve as a chondrocyte epimatrix; the chondrocyte epimatrix biological membrane prepared from the acellular cartilage matrix has the bionic chondrocyte epimatrix ingredients, is excellent in cell consistency, does not arouse immunological rejection of host cartilage tissue, can be used for repairing the damage of hyaline cartilage tissue of joints and reconstructing the hyaline cartilage tissue, and also can be used for a seed cell inoculating vector and a growth factor sustained-release vector; and the chondrocyte epimatrix contains blood vessel inhibiting factor ingredients, so the membrane also can be used for preventing the conglutination of tissue such as muscle tendons.
Owner:成都军区昆明总医院

Instruments, Methods and Systems for Harvesting and Implanting Cartilage Material

The present disclosure provides instruments and systems for accessing and removing hyaline cartilage from desired donor sites. The present disclosure also provides instruments / systems for implantation of hyaline cartilage grafts, e.g., to fill osteochondral defects. The apparatus / systems may be used in connection with mapping techniques and systems. Thus, in exemplary embodiments of the present disclosure, a clinician may be guided in his use of the disclosed apparatus / systems by articular joint surface mapping data in locating / identifying harvest sites for “best fit” grafts, i.e., grafts that exhibit desired geometric and / or surface attributes for use in particular implantation site(s). Alternatively, the disclosed instruments / systems may be employed to access anatomical sites independent of such mapping techniques / systems.
Owner:YALE UNIV +1

Decellularized hyaline cartilage powder for tissue scaffolds

The present invention is related to compositions comprising decellularized cartilage tissue powder in the forms of paste, putty, hydrogel, and scaffolds, methods of making compositions, and methods of using these compositions for treating osteochondral defects and full- or partial-thickness cartilage defects.
Owner:UNIVERSITY OF KANSAS +1

Biomaterial composite composition and method of use

This invention relates to a process to facilitate osteochondral bone remodeling in a subject by inducing regeneration of this bone to a healthy, vascularized state capable of supporting the underlying hyaline cartilage of articular joints and spinal discs, both biomechanically and metabolically and to deliver a bioactive agent. This process involves the steps of: administering an effective amount of an injectable in situ curing biomaterial composite to a site. The biomaterial composite product is prepared by a process involving the steps: admixing an alginate solution with a nonporous aggregate of β-tricalcium phosphate, in a sufficient amount to initiate polymerization of the alginate solution, to form a hydrogel having from between 10 to 20 percent by volume of β-tricalcium phosphate.
Owner:UNIVERSITY OF MEMPHIS RESEARCH FOUNDATION

Device & method for restoring joints with artificial cartilage

ActiveUS20100125341A1Minimize surgical interventionMinimize human tissue resectionBone implantJoint implantsFemoral boneSacroiliac joint
An intra-articular device comprises a membrane shaped like a cap having a peripheral geometry similar to that of a head of a bone for a joint to be restored and an open end sized to be applied over the bone proximate the head, so that the open end can be stretched over the head of the bone and held in position on the bone interposed between the head and its corresponding articular component of the joint. The membrane is made of a polyether-urethane-urea material selected to have a property of absorbing the joint's own synovial fluid so as to swell and have a viscoelastic property similar to the body's own articular hyaline cartilage. In a preferred embodiment, the membrane cap is adapted for use on a femoral bone for restoring a hip joint. A related method of installing an intra-articular device as artificial cartilage comprises forming a membrane cap to be applied over the head of the bone of the joint, surgically exposing the head of the bone, installing the membrane cap over the head of the bone, then repositioning the capped head of the bone back in its place in the joint with the membrane interposed as artificial cartilage.
Owner:SOFTJOINT CORP

Resilient knee implant and methods

This disclosure is directed to a resilient interpositional arthroplasty implant for application into a knee joint to pad cartilage defects, cushion a joint, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. Rather than using periosteal harvesting for cell containment in joint resurfacing, the walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability to avoid extrusion or dislocation. Appendages of the implant may repair or reconstruct tendons or ligaments, and an interior of the implant that is inflatable may accommodate motions which mimic or approximate normal joint motion.
Owner:IORTHOPEDICS INC

Cartilage repair methods

The present application discloses methods for repairing hyaline cartilage defects. The methods comprise a combination of introducing autologous bone mesenchymal stem cells to a joint, and applying to the joint a membrane comprising a polyester entangled with a polysaccharide. In some aspects, the bone mesenchymal stem cells are mesenchymal stem cells originating in bone underlying the joint. In these aspects, contact between the joint and the mesenchymal stem cells can be effected by introducing apertures through the bone using standard surgical techniques such as microfracture, abrasion, or drilling. Cartilage which forms in response to application of these methods is hyaline cartilage rather than fibrocartilage.
Owner:ISTO TECH II LLC

Placental Membrane Preparations and Methods of Making and Using Same for Regenerating Cartilage and Spinal Intervertebral Discs

A method for treating cartilage defects including providing a placental membrane preparation that includes ground or minced placental membranes and optionally, a ground or minced cartilage and / or biocompatible glue, and introducing the preparation to a cartilage defect within a skeletal joint. The cartilage defect may include a hyaline cartilage defect, such as a chondral defect, or meniscal defect. The treatment may be provided in combination with other treatments such as marrow stimulation treatments and surgical repair treatments using sutures or other fixation techniques. The preparation promotes the regeneration of cartilage within the skeletal joint.
Owner:PRIME MERGER SUB LLC

Compositions comprising bone marrow cells, demineralized bone matrix and various site-reactive polymers for use in the induction of bone and cartilage formation

A composition comprising bone marrow cells (BMC) and demineralized bone matrix (DBM) or demineralized tooth matrix (DTM), together with a site-responsive polymer, optionally further comprising bone morphogenetic proteins (BMP) and / or other active agents, particularly for use in the transplantation of mesenchymal progenitor cells into a joint or a cranio-facial-maxillary bone, alveolar bone of maxilla and mandibula, spine, pelvis or long bones, or for construction or reconstruction of any extra skeletal bone, including for mechanical or biological support of artificial implants to the joint or of the joint or to the bone, for restoring and / or enhancing the formation of a new hyaline cartilage and subchondral bone structure. A kit is provided for performing transplantation of the composition into a joint, maxillary or mandibular alveolar bone or any bony structure of a mammal, including support of artificial implants.
Owner:SLAVIN SHIMON +4

Resilient knee implant and methods

This disclosure is directed to a resilient interpositional arthroplasty implant for application into a joint to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional compliant polymer arthroplasties that promote anatomic joint motion.
Owner:IORTHOPEDICS INC

Resilient interpositional hip arthroplasty device

InactiveUS20160095706A1Preserve joint motionsRemoving dysfunctionJoint implantsHip jointsArticular surfaceAppendage
This disclosure is directed to a resilient interpositional arthroplasty implant for application into joints to pad cartilage defects, cushion joints, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. Rather than using periosteal harvesting for cell containment in joint resurfacing, the walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability to avoid extrusion or dislocation. Appendages of the implant may repair or reconstruct tendons or ligaments, and an interior of the implant that is inflatable may accommodate motions which mimic or approximate normal joint motion.
Owner:IORTHOPEDICS INC

Resilient interpositional arthroplasty device

ActiveUS20170312088A1Preserve joint motionsRemoving dysfunctionPharmaceutical delivery mechanismJoint implantsArticular surfacesAnatomical structures
This disclosure is directed to restoring joints by deploying a resilient interpositional arthroplasty implant. Such implants function to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional inflatable or compliant polymer arthroplasties that promote anatomic joint motion.
Owner:IORTHOPEDICS INC

Resilient interpositional arthroplasty device

ActiveUS20190038423A1Preserve joint motionsRemoving dysfunctionJoint implantsStaplesAnatomical structuresArticular surfaces
This disclosure is directed to a resilient interpositional arthroplasty implant. Such implants function to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional inflatable or compliant polymer arthroplasties that promote anatomic joint motion.
Owner:IORTHOPEDICS INC

Resilient interpositional arthroplasty device

ActiveUS9757241B2Preserve joint motionsRemoving dysfunctionPharmaceutical delivery mechanismStaplesArticular surfacesAnatomical structures
This disclosure is directed to a resilient interpositional arthroplasty implant for application into a joint to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional inflatable or compliant polymer arthroplasties that promote anatomic joint motion.
Owner:IORTHOPEDICS INC

Resilient medically inflatable interpositional arthroplasty device

InactiveUS20160058548A1Preserve joint motionsRemoving dysfunctionAnkle jointsSurgeryArticular surfacesArticular surface
This disclosure is directed to a resilient interpositional arthroplasty implant for application into joints to pad cartilage defects, cushion joints, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. Rather than using periosteal harvesting for cell containment in joint resurfacing, the walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability to avoid extrusion or dislocation. Appendages of the implant may repair or reconstruct tendons or ligaments, and an interior of the implant that is inflatable may accommodate motions which mimic or approximate normal joint motion.
Owner:IORTHOPEDICS INC

Bionic heterogeneous integrated bone-cartilage repair stent and preparation method thereof

ActiveCN111330084ARealize the structureRealize the biomimetic process of compositionTissue regenerationProsthesisCartilage repairBiocompatibility
The invention provides a bionic heterogeneous integrated bone-cartilage repair stent and a preparation method thereof. The repair stent is made of a multilayered structure stent material and sequentially comprises a hyaline cartilage layer, a calcified cartilage layer and a subchondral bone layer from top to bottom, wherein the hyaline cartilage layer is of an interpenetrating porous structure formed by interweaving two biocompatible materials including hyaluronic acid and chitosan; the calcified cartilage layer is of an oriented gradient porous structure formed by compositing chitosan and nano-hydroxyapatite; and the subchondral bone layer is of a homogeneous porous structure formed by hybridizing bone matrix component like chitosan and nano-hydroxyapatite. An in-situ synthesis method isadopted and combined with a directed freezing technology to construct an integrated multilayer repair stent material with a bone-like-cartilage heterostructure. The composite material synthesized by the preparation method combines advantages of all components, and has the effects of good antibacterial activity, biocompatibility and in-situ induction of two-way regeneration of bone and cartilage; and the binding force of an interface is enhanced, so that the structure integration of the stent is realized.
Owner:SICHUAN UNIV

Gene therapy using TGF-beta

The subject invention is related to a cell-mediated gene therapy treatment for orthopedic disease using a member belonging to the transforming growth factor-β (TGF-β) superfamily. TGF-β gene therapy as a new treatment method for degenerative arthritis is demonstrated. After transfection of TGF-β cDNA expression vectors into fibroblasts (NIH 3T3-TGF-β1), the cells were injected into rabbit achilles tendon and knee joints with artificially-made cartilage defects. Intratendinous injections were performed to determine the optimal concentration for in vivo expression. Partially defected cartilage model was made to simulate degenerative arthritis of the knee joint. The partial cartilage defect treated with the cell-mediated gene therapy procedure was covered by newly formed hyaline cartilage which indicates that the cells survived and stimulated matrix formation in this area. Completely denuded cartilage areas were covered by fibrous collagen.
Owner:KOLON TISSUEGENE INC

Compositions comprising bone marrow cells together with demineralized and/or mineralized bone matrix and uses thereof in the induction of bone and cartilage formation

A composition comprising bone marrow cells (BMC) and demineralized bone matrix (DBM) and / or mineralized bone matrix (MBM) and optionally comprising bone morphogenetic protein / s (BMP) and / or other active agents, particularly for use in the transplantation of mesenchymal progenitor cells into a joint and / or a cranio-facial maxillary bone, for restoring and / or enhancing the formation of a new hyaline cartilage and subchondral bone structure. The composition of the invention and method of treatment employing the same may be used for the treatment of hereditary or acquired bone disorders, hereditary or acquired cartilage disorders, malignant bone or cartilage disorders, metabolic bone diseases, bone infections, conditions involving bone or cartilage deformities and Paget's disease. The composition and method may further be used for the correction of complex fractures, bone replacement and formation of new bone in plastic or sexual surgery, for support of implants of joints, cranio-facial-maxillary bones, or other musculoskeletal implants, including artificial implants. The method of the invention may further be used for treating damaged joints or degenerative arthropathy associated with malformation and / or dysfunction of cartilage and / or subchondral bone. A kit is provided for performing transplantation into a joint or a cranio-facial-maxillary bone of a mammal of the composition of the invention.
Owner:HADASIT MEDICAL RES SERVICES & DEVMENT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products