Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

397 results about "Fiber optic splitter" patented technology

A fiber-optic splitter, also known as a beam splitter, is based on a quartz substrate of an integrated waveguide optical power distribution device, similar to a coaxial cable transmission system. The optical network system uses an optical signal coupled to the branch distribution. The fiber optic splitter is one of the most important passive devices in the optical fiber link. It is an optical fiber tandem device with many input and output terminals, especially applicable to a passive optical network (EPON, GPON, BPON, FTTX, FTTH etc.) to connect the MDF and the terminal equipment and to branch the optical signal.

Novel optical fiber Brillouin light time domain analyzer

The invention discloses an optical fiber Brillouin optical time domain analyzer, which is made based on optical fiber broadband nonlinear light amplification effect and strain, temperature effect and optical light domain analysis principle of coherent amplified Brillouin scattering. The optical fiber Brillouin optical time domain analyzer comprises a narrowband single-frequency fiber laser, a fiber beam splitter, a pulse modulator, two optical fiber circulators, a heterodyne receiver, a digital signal processor, a fiber-grating filter, a monomode fiber and a continuous-operating fiber Raman pump laser. The continuous-operating high-power fiber Raman pump laser is used as the pump light source of the Brillouin optical time domain analyzer, which can overcome the difficulty in strictly locking the frequency of a detection laser and the pump laser of the Brillouin optical time domain analyzer; and boardband fiber nonlinear scattering amplification is used for substituting for narrowband Brillouin amplification to increase the gain of stimulated Brillouin scattering with back amplification, thus improving the S/N ratio of the system, increasing the measurement length, and improving the accuracy for simultaneous measurement of stain and temperature.
Owner:WEIHAI BEIYANG PHOTOELECTRIC INFORMATION TECH

Method and system for monitoring current-carrying capacity of cable based on distributed optical fiber temperature measuring method

The invention relates to a method and a system for monitoring current-carrying capacity of a cable based on a distributed optical fiber temperature measuring method. The system comprises a laser drive device which is matched with a temperature sensing device in a cable; the temperature sensing device is matched with the corresponding optical fiber splitter; the output end of each optical fiber splitter is connected with one end of the cable; the other end of the cable is connected with a wire distribution cabinet which is matched with demodulating equipment; and the output end of the demodulating equipment is connected with a cable integrated Ethernet chip (IEC) compute server which is output to a client terminal. Combining the distributed optical fiber temperature measuring method, by the method and system provided by the invention, the important parameters of the cable operation can be acquired; the stimulated accuracy is greatly improved through the comprehensive analysis of the current-carrying capacity, thus providing the decision standard for ensuring the safe operation of the city cables and the reasonable configuration of the transmission capacity.
Owner:STATE GRID SHANDONG ELECTRIC POWER

Alarm condition distributed fiber optic sensor with storage transmission-reflection analyzer

This invention pertains to alarm condition fiber optic sensor with storage transmission-reflection analyzer for detection and localization of any number of consecutive loss-inducing disturbances along the test fiber. The sensor includes a test fiber having a first port and a second port; a light source for producing a beam of light propagating along the test fiber; a fiber optic beamsplitter having a first port connected to the light source, a second port connected to the first port of the test fiber, and a third and a fourth port; a plurality of reflectors positioned along the test fiber and a plurality of loss-inducing members positioned along the test fiber, wherein said each of the reflectors is matched to each loss-inducing members, wherein at least one reflector is placed between each consecutive loss-inducing members; an optical reflection detector to receive a light flux, the optical reflection detector connected to the third port of optic beamsplitter, wherein the reflection detector is adapted to sense changes in the average power of the light reflected from the reflectors; an optical transmission detector adapted to receive the light flux, connected to the second port of test fiber, said transmission detector being operable to sense changes in the average power of the light transmitted through the test fiber; and a storage transmission-reflection analyzer connected to reflection and transmission detectors, and adapted to measure time-behavior of the transmission-reflection dependencies of test fiber, said analyzer being operable to identify the locations and values of any number of consecutive loss-inducing disturbances along the test fiber by using stored locations and values of previous perturbations and the slope of dependence of normalized reflected average power versus the square of normalized transmitted average power for current loss-inducing perturbation.
Owner:CENTRO DE INVESTIGACION CIENTIFICA Y DE EDUCACION SUPERIOR DE ENSENADA +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products