Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3830 results about "Low-noise amplifier" patented technology

A low-noise amplifier (LNA) is an electronic amplifier that amplifies a very low-power signal without significantly degrading its signal-to-noise ratio. An amplifier will increase the power of both the signal and the noise present at its input, but the amplifier will also introduce some additional noise. LNAs are designed to minimize that additional noise. Designers can minimize additional noise by choosing low-noise components, operating points, and circuit topologies. Minimizing additional noise must balance with other design goals such as power gain and impedance matching.

Transmit/receiver module for active phased array antenna

This invention relates to a transmit / receive module for a high power Active Phased Array Antenna system operating in L-band based upon a combination of Hybrid Microwave Integrated Circuit (MIC) as well as Monolithic Microwave Integrated Circuit (MMIC) technology. The transmit / receive module includes a power monitoring means, transmitter protector means, and a receiver protector means. The module comprises a signal transmit chain incorporating power conditioner and a signal receive chain incorporating control electronics and bias- sequencer modulator. The transmit chain has switching means for switching the module to transmit mode which is connected to the transmit amplifier chain through a shared digital phase shifter. The amplified signals from the transmit amplifier chain are conveyed to a duplexer means. In receive mode, the receive chain receives signal through drop-in circulator and high power switch and comprises of high power limiter, low noise amplifier means, and a digital attenuator means connected to the shared digital phase shifter through T / R switch means. Electronic means are connected through integrated control electronic., bias sequencer modulator and power conditioner for controlling the operation of the device.
Owner:CHIEF CONTROLLER RES & DEV MINIST OF DEFENCE GOVERNMENT OF INDIA THE

Radio frequency integrated circuit having an antenna diversity structure

A radio frequency integrated circuit includes a power amplifier, a low noise amplifier, a first transformer balun, and a second transformer balun. The power amplifier includes a first power amplifier section and a second power amplifier section. When enabled, the first and second power amplifier sections amplify an outbound radio frequency (RF) signal to produce a first amplified outbound RF signal and a second amplified outbound RF signal, respectively. The power amplifier provides the first amplified outbound RF signal to the first transformer balun and the second outbound RF signal to the second transformer balun, where the first transformer balun is coupled to a first antenna and the second transformer balun is coupled to a second antenna. The low noise amplifier includes a first low noise amplifier section and a second low noise amplifier section. When enabled, the first low noise amplifier section amplifies a first inbound RF signal to produce a first amplified inbound RF signal, and, when enabled, the second low noise amplifier section amplifies a second inbound RF signal to produce a second amplified inbound RF signal. The low noise amplifier receives the first inbound RF signal from the first transformer balun and receives the second inbound RF signal from the second transformer balun.
Owner:AVAGO TECH WIRELESS IP SINGAPORE PTE

Method for constructing radio frequency front end of multi-mode multi-band satellite navigation receiver and module thereof

The invention discloses a configurable multi-mode multi-band satellite navigation receiving method and a radio frequency front end module constructed by the method. The front end module can receive signals of satellite navigation and positioning systems such as a global positioning system (GPS), the Big Dipper, a Galileo positioning system and a global navigation satellite system (Glonass), and comprises a configurable low-noise amplifier (LNA) with a buffer and an active balun, a folding passive mixer with a configurable frequency synthesizer, a configurable multi-mode filter, an automatic gain control (AGC) amplifier, a direct-current bias circuit, and a multi-mode multi-band program controlled and coded on-off control word from a receiving system. The radio frequency front end module can meet the requirement of multi-band multi-mode work through the control word programmed by the receiving system, has a simple and reliable structure, does not need complicated time division multiplexing control system and off-chip module, has low cost and high flexibility, and improves the noise performance of the radio frequency front end of the whole receiver and multi-mode multi-band signal processing capacity; and a one-channel signal is input into the module, and the module outputs a two-channel differential signal. The receiver can be used for receiving and processing multi-mode satellite navigation signals asynchronously, and receiving and processing satellite navigation signals with the required mode in different time intervals according to the requirement.
Owner:杭州中科微电子有限公司

Computationally efficent radar processing method and sytem for SAR and gmti on a slow moving platform

A method and system for processing radar data obtained from a platform which is subjected to non-uniform movement, the distance the platform travels during the formation of an image comprising an aperture; the system comprising software programming for performing a subroutine for building up an average pulse representing a single point on the aperture; the subroutine comprising the steps of inputting radar data from a radar antenna; passing the radar signal through low noise amplifier to reduce impact of electronic noise from the radar system; down converting the signal with a mixer to obtain a lower frequency; filtering out harmonics from the higher frequency range; sampling the radar data using an analog to digital converter at least at Nyquist down range frequency; based upon the IF of the radar; determining a scene center (center of SAR imagery) for the purpose of motion compensation; performing a two stage averaging scheme of the received signals with a variable window function; determining a window function based upon the velocity and acceleration of the platform and scene center; the window function comprising a first stage window; coherently averaging N pulses together to create an average pulse; performing an inverse Fourier transform; compensating to the scene center by multiplying by a complex exponential based upon both the GPS and inertial navigational system; summing the average pulses using low pass filter; the software programming operating to repeat the step of building up an average pulse a first predetermined number of times for a time period that is less than the Nyquist sample time interval; the software programming operating to repeat the step of building an average pulse for a predetermined number of times to generate a second predetermined number of average pulses; the software programming operating to perform a two dimensional inverse Fourier transform to obtain SAR image; outputting the SAR image on a display screen; and a display for displaying the outputted SAR image.
Owner:US SEC THE ARMY THE

Antenna configured for low frequency applications

An antenna configured for low frequency applications on a mobile device includes an antenna element coupled to a conductive structure which, in turn, is coupled to the user of the mobile device such that the user of the mobile device effectively becomes part of the antenna. The conductive structure can include, for example, the device housing being made from a conductive material, a conductive structure embedded inside the device housing, or conductive pads exposed in the device housing. The antenna element is electrically connected to the conductive structure and the user can be coupled to the conductive structure either through direct contact or through capacitive coupling. In addition, the antenna can include an active element configured to boost free space operation efficiency. The active element can include, for example, a low noise amplifier integrated onto a low noise amplifier board. The active element can be at least partially surrounded by a hollow support structure around which an antenna coil is wrapped, where the antenna coil is coupled to the active element. Furthermore, one or more antenna coils can be utilized either separately or in conjunction with the antenna for low frequency applications, where the one or more antenna coils can have integrated therein inductive components and/or active/switching elements that allow the one or more antenna coils to be tuned to a desired frequency.
Owner:KYOCERA AVX COMPONENTS (SAN DIEGO) INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products