Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

580 results about "Antenna coupling" patented technology

High dielectric antenna array

A system and method for wirelessly transmitting signals via antenna phased array. In order to decrease the distance between individual antennae in the array, the antennae are submersed in a high dielectric material in addition to being arranged at right angles to one another, both features precluding one or more antennae from coupling. Furthermore, wires are covered in high dielectric material in order to refract RF signals around them, allowing antennae towards the center of the array to successfully transmit signals past other layers.
Owner:OSSIA

Multi mode radio frequency transceiver front end circuit

A front end circuit for coupling an antenna to a first radio frequency (RF) transceiver and a second RF transceiver is contemplated. The RF transceivers have a signal input, a signal output, a receive enable line and a transmit enable line. In addition to an antenna port, the front end circuit has a first power amplifier and a first low noise amplifier both coupled to first RF transceiver, and a second power amplifier and a second low noise amplifier both coupled to the second RF transceiver. The front end circuit includes a matching network that couples the power amplifiers and the low noise amplifiers, the various outputs and inputs thereof being common.
Owner:SKYWORKS SOLUTIONS INC

RF antenna coupling structure

An RF antenna coupling structure includes a first transformer, a second transformer, and a transformer balun. The first transformer includes a primary winding and a secondary winding, wherein the primary winding of the first transformer is operably coupled to a power amplifier, and wherein the secondary winding of the first transformer has a desired output impedance corresponding to the operational needs of the power amplifier. The second transformer includes a primary winding and a secondary winding, wherein the primary winding of the second transformer is operably coupled to a low noise amplifier, and wherein the secondary winding of the second transformer has a desired output impedance corresponding to the needs of the low noise amplifier. The transformer balun includes a differential winding and a single-ended winding, wherein the differential winding is operably coupled to the secondary windings of the first and second transformers and the single-ended winding is operably coupled to an antenna.
Owner:AVAGO TECH WIRELESS IP SINGAPORE PTE

Transmit/receive switch device

An integrated transmit / receive (T / R) switch device comprises a substrate, an antenna port to couple with an antenna, a transmitter port to couple with a transmitter, and a receiver port to couple with a receiver. A receive path is provided between the antenna port and the receiver port, and a transmit path is provided between the antenna port and the transmitter port. The transmit path includes a first transistor on the substrate, and the first transistor is coupled in series between the antenna port and the transmitter port. A body node of the first transistor is unconnected, and the substrate is configured to provide a high impedance path from the first transistor to a reference voltage. A second transistor on the substrate is coupled in series between the receiver port and the reference voltage.
Owner:MARVELL INT LTD

System and method for selectively reading RFID devices

A radio frequency identification (RFID) device detection system includes an RFID device reader configured to detect RFID devices within a predetermined designated area, and two or more jamming signal transmitters configured to prevent the RFID device reader from detecting and reading devices outside of the designated area. The jamming signal transmitters may include a pair of low-frequency field generator loops driven out of phase with one another. RFID devices for use with the detection system may have a pair of antennas, one for detection by the RFID reading system, and another antenna for use in receiving signals from the jamming signal transmitters, in order to prevent communication with a wireless communication device such as an RFID chip, to which the antennas are coupled. The two antennas may be coupled to the RFID chip in parallel, with the antennas each coupled to the same contacts of the RFID chip.
Owner:AVERY DENNISON CORP

Devices, methods, and computer program products for controlling power transfer to an antenna in a wireless mobile terminal

A wireless mobile terminal includes an antenna, a power amplifier coupled to the antenna, a power detector coupled to an output of the power amplifier, a phase shifter coupled between the output of the power amplifier and the antenna, and a controller coupled to the phase shifter. The power detector is configured to detect a power of a signal provided by the power amplifier. The controller is configured to adjust the phase shifter responsive to the detected signal power. More particularly, the controller may be configured to adjust the phase shifter to modify a phase component of a reflection coefficient of a load impedance at the power amplifier output without substantially altering a magnitude of the reflection coefficient. Related methods and computer program products are also discussed.
Owner:SONY ERICSSON MOBILE COMM AB

Method and apparatus for operating a dual-mode radio in a wireless communication system

The present invention is a method and apparatus for operating a dual-mode radio (DMR) in a wireless communication system. The present invention provides “coexistence” or cooperation of Bluetooth™ and 802.11 devices operating in close proximity to each other within a DMR. The present inventive method and apparatus reduces reception errors and prevents saturation of the Bluetooth™ devices caused by 802.11 transmissions. The present inventive antenna switching method provides a means for coupling multiple antennas to Bluetooth™ and 802.11 transmit and receive devices. Saturation of the Bluetooth™ receive devices is prevented by electrically isolating the Bluetooth™ receive devices from antennas used by the 802.11 device during 802.11 transmissions. The antenna switching apparatus includes a plurality of switches capable of selectively coupling and decoupling first and second antennas to an 802.11 and a Bluetooth™ device.
Owner:QUALCOMM INC

Antenna coupling systems and methods for transmitters

Multiple radio channel frequency signals that are modulated with respective information modulation are transmitted from a common antenna at multiple radio frequencies. Multiple modulators are provided, a respective one of which corresponds to a respective one of the radio channel frequencies. Each modulator generates at least one constant amplitude, phase modulated drive signal at the corresponding radio channel frequency from the respective information modulation, such that the at least one constant amplitude, phase modulated drive signal corresponds to the information modulation for the corresponding radio frequency. At least one saturated power amplifier is provided for each of the at least one constant amplitude, phase modulated drive signals. A respective saturated power amplifier is responsive to the corresponding constant amplitude, phase modulated drive signal, to produce a corresponding amplified output signal at an output thereof. A coupling network connects the outputs of the saturated power amplifiers in series, to produce a combined signal that is applied to the common antenna, such that the common antenna radiates the radio channel frequency signals that are modulated with the respective information modulation. In first embodiments, the at least one constant amplitude, phase modulated drive signal is a single constant envelope modulation drive signal, wherein the information modulation is a constant envelope information modulation. In other embodiments, at least two constant amplitude phase modulated drive signals are provided at the corresponding radio channel frequency, such that the at least two constant amplitude, phase modulated drive signals correspond to the information modulation for the corresponding radio frequency.
Owner:ERICSSON INC

Single frequency duplex radio link

A radio link with two communicating transceivers each having a system for isolating incoming and outgoing radio signals to permit simultaneous transmit and receive by each transceiver on the same frequency or in the same frequency range. This is done so that in-coming receive signals received by each of the transceivers from the other transceiver is much stronger than the portion of its own transmitted signal that is coupled back into its antenna. The invention uses a special electronic circuit, termed the iso-circulator, to couple the antenna to both the co-located receiver and the transmitter. The iso-circulator circuit includes a simulated antenna load with an impedance matched to the antenna impedance. The circuit also includes a transformer with its primary side fed asymmetrically by the antenna so that it can pass the desired receive signal with minimum attenuation. The transformer's primary is on the other hand fed symmetrically from both sides by equally small portions of the transmit power from the co-site transmitter, but these signals are 180 degrees out of phase and cancel almost completely in the transformer.
Owner:TREX ENTERPRISES CORP

Low power very high-data rate device

A radio frequency (RF) transmitter has a plurality of digitally controlled phased array antennas coupled to and controlled by the processor to transmit data. The processor is to enable one or more antennas to be turned off during a use of the apparatus to reduce a power consumption of the apparatus.
Owner:QUALCOMM INC

Feedback compensation detector for a direct conversion transmitter

A feedback compensation detector for a direct conversion transmitter includes a baseband processor, a direct up-converter, an antenna, and an impairment detection and compensation feedback circuit. The baseband processor generates an in-phase (I) baseband signal and a quadrature-phase (Q) baseband signal. The direct up-converter is coupled to the baseband processor, and combines the I and Q baseband signals with an RF carrier signal to generate an RF output signal. The antenna is coupled to the direct up-converter, and transmits the RF output signal. The impairment detection and compensation feedback circuit is coupled to the RF output signal and the I and Q baseband signals. The impairment detection and compensation feedback circuit down-converts the RF output signal to generate an intermediate frequency (IF) signal, measures as least one signal impairment in the IF signal, and pre-distorts the I and Q baseband signals to compensate for the measured signal impairment.
Owner:MALIKIE INNOVATIONS LTD

Optically coupled headset and microphone

Apparatus and methods for transferring audio between a headset and electronic equipment over an optical link. The apparatus includes an electro-optical interface for electrically connecting to the electronic equipment, an optical link, and an electro-optical headset. Audio from the electronic equipment modulates a light source in the electro-optical interface. A modulated light signal is transmitted through the optical link to the electro-optical headset where it is demodulated and reproduced as the original audio in the ear of a user wearing the headset. Also, another audio from the user's mouth produces another modulated light signal in the electro-optical headset. The other modulated light signal is transmitted through the optical link to the electro-optical interface where it is demodulated to provide the other audio to the electronic equipment. The non-electrical optical link may improve audible communications between the electronic equipment and the headset in radio-frequency noisy environments. Also, the non-electrical optical link may prevent coupling with an aerial of the electronic equipment and improve radio propagation.
Owner:SPRING SPECTRUM LP

Antenna coupling for sensing and dynamic transmission

A wireless transmission system disclosed herein includes a transmitter-receiver pair. When a dielectric object approaches the transmitter-receiver pair, a signal strength of a transmitted carrier wave increases at the receiver. In response, transmission power of the transmitter can be dynamically reduced. When the dielectric object moves away from the transmitter-receiver pair, a signal strength of the carrier wave decreases at the receiver. In response, the transmission power of the transmitter can be dynamically increased.
Owner:MICROSOFT TECH LICENSING LLC

Method and apparatus for tuning antennas in a communication device

A system that incorporates teachings of the present disclosure may include, for example, a process for obtaining a first operational metric for a transmitter of a communication device, determining a range of impedances based on the first operational metric where the range of impedances is associated with an acceptable level of performance for the communication device, obtaining a second operational metric for the transmitter, determining a target impedance within the range of impedances based on the second operational metric, and tuning a first impedance matching network based on the target impedance, where the first impedance matching network is coupled with a first antenna of the communication device, and where the tuning is based on adjusting a first variable component of the first impedance matching network. Additional embodiments are disclosed.
Owner:NXP USA INC

Phased array systems and methods

A phased array system having antennas, non-variable phase shifters, and switches. The non-variable phase shifters are configured to be coupled selectively to a transmitter or a receiver. A non-variable phase shifter is configured to shift a phase of an electromagnetic energy wave that traverses the non-variable phase shifter by a fraction of a period of the electromagnetic energy wave for a range of frequencies of the electromagnetic energy wave. At least one of the fraction and the range associated with the non-variable phase shifter is different from at least one of the fraction and the range associated with other non-variable phase shifters. The switches are configured to couple selectively the antennas to the non-variable phase shifters, the transmitter, or the receiver.
Owner:ONED MATERIAL INC

Systems and methods that employ a dualband IFA-loop CDMA antenna and a GPS antenna with a device for mobile communication

The present invention comprises systems and methods for cellular, PCS, GPS and / or Bluetooth mobile communication (e.g., a mobile telephone). The systems and methods employ a fully integrated dual band IFA / loop CDMA antenna for cellular and PCS communication. Fully integrating the CDMA antenna within a PWB provides for mitigation of lumped elements to establish dual banding, and can provide for reduced antenna size, device size, cost and interference form a user's hand. The IFA antenna is configured to transmit and receive within the cellular frequency band via a capacitive tap, and the loop antenna is configured to transmit and receive within the PCS frequency band via an impedance matching stub and ground location. The system and methods further employ a firewall to mitigate antenna coupling, and a metal reflector to reduce the electromagnetic reflection, and improve antenna gain and efficiency.
Owner:NOKIA CORP

Portable terminal apparatus

The present invention has an object to provide a portable terminal apparatus capable of reducing that antenna characteristics of respective antenna elements are deteriorated due to antenna coupling phenomena even when a plurality of wireless communication functions are carried out at the same time by utilizing a plurality of antennas.The portable terminal apparatus 1 of the present invention is comprised of: a first wireless unit 12 for performing a wireless communication by utilizing electromagnetic waves of a first frequency range; a second wireless unit 22 for performing a wireless communication by utilizing electromagnetic waves of a second frequency range which is different from the first frequency range; a first antenna element 11 connected to the first wireless unit 12; and a second antenna element 21 connected to the second wireless unit 22; and in the portable terminal apparatus 1, an impedance characteristic of the first antenna element 11 has a first frequency characteristic in which at least a characteristic in the first frequency range is superior than a characteristic in the second frequency range; and an impedance characteristic of the second antenna element 21 has a second frequency characteristic in which at least a characteristic in the second frequency range is superior than a characteristic in the first frequency range.
Owner:PANASONIC CORP

Front-end Circuit for Band Aggregation Modes

A front-end circuit for a wireless communication unit includes at least two antenna feeds. At least one of the antennas is coupled to an antenna switch. The circuit comprises filters and duplexers and is prepared to operate a number of FDD frequency bands. Each FDD band comprises an Rx band for receive signals and a Tx band for transmit signals. The circuit provides a single band operation mode for each frequency band and aggregated band operation modes. In an aggregated band operation mode Rx signals can be received in two different frequency bands at the same time as well as Tx signals can be transmitted in at least one of the two different frequency bands. In addition, TDD bands as well as GSM bands are covered.
Owner:SNAPTRACK

Radio Frequency Front End Circuit with Antenna Diversity for Multipath Mitigation

A front end circuit for selectively coupling a first antenna and a second antenna to a transmit chain and a receive chain of a radio frequency (RF) transceiver is disclosed. There is a first power amplifier having an input connectible to the transmit chain of the RF transceiver, a first low noise amplifier having an output connectible to the receive chain of the RF transceiver, and a second low noise amplifier with an input connectible to the second antenna, as well as an output connectible to the receive chain of the RF transceiver. A first matching and switch network is connected to the first antenna, the output of the first power amplifier, and the input of the first low noise amplifier. Transmit signals from the first power amplifier and receive signals from the first antenna are selectively passed to the first antenna and the first low noise amplifier.
Owner:SKYWORKS SOLUTIONS INC

Phase modulation for backscatter transponders

A radio frequency identification system having a passive backscatter transponder employing phase modulation. The transponder selectively couples its antenna to one of two or more impedances, wherein the impedances each produce a reflected signal when coupled to the antenna in the presence of a continuous RF wave from the reader. The reflected signals produced by the impedances are out-of-phase with each other. The transponder switches between impedances to encode transponder information into a reflected signal through phase shifts in the reflected signal. The reader detects the phase shifts in the reflected signal received at the reader to obtain the transponder information. The impedances are selected so as to produce reflected signals having a desired phase relationship or difference and having sufficient amplitude.
Owner:MARK IV INDS

Method and apparatus for canceling the transmitted signal in a homodyne duplex transceiver

An apparatus comprises a transmitter, a receiver, an antenna and a signal cancellation circuit. The transmitter is configured to send a transmitter signal associated with a frequency. The receiver is associated with the frequency. The antenna is coupled to the transmitter and the receiver. The signal cancellation circuit is coupled to the transmitter, the receiver and the antenna. The signal cancellation circuit is configured to phase shift a first portion of the transmitter signal to produce a phase-shifted signal. The signal cancellation circuit is configured to combine the phase-shifted signal with a second portion of the transmitter signal to produce a combined signal. The second portion of the transmitter signal is associated with a reflection of a third portion of the transmitter signal from the antenna. The first portion, the second portion and the third portion of the transmitter signal are different from each other.
Owner:NEOLOGY INC

Feedback Compensation Detector For A Direct Conversion Transmitter

A feedback compensation detector for a direct conversion transmitter includes a baseband processor, a direct up-converter, an antenna, and an impairment detection and compensation feedback circuit. The baseband processor generates an in-phase (I) baseband signal and a quadrature-phase (Q) baseband signal. The direct up-converter is coupled to the baseband processor, and combines the I and Q baseband signals with an RF carrier signal to generate an RF output signal. The antenna is coupled to the direct up-converter, and transmits the RF output signal. The impairment detection and compensation feedback circuit is coupled to the RF output signal and the I and Q baseband signals. The impairment detection and compensation feedback circuit down-converts the RF output signal to generate an intermediate frequency (IF) signal, measures as least one signal impairment in the IF signal, and pre-distorts the I and Q baseband signals to compensate for the measured signal impairment.
Owner:MALIKIE INNOVATIONS LTD

Method and apparatus for beam forming and antenna tuning in a communication device

A system that incorporates teachings of the subject disclosure may include, for example, determining antenna coupling among a plurality of antennas of the communication device and adjusting beam forming for the plurality of antennas utilizing phase shifters coupled with radiating elements of the plurality of antennas, where the adjusting of the beam forming is based on forming a desired antenna pattern that increases radiated throughput and reduces the antenna coupling among the plurality of antennas. Other embodiments are disclosed.
Owner:NXP USA INC

Systems and methods for measuring a parameter of a landfill including a barrier cap and wireless sensor systems and methods

A method of measuring a parameter of a landfill including a cap, without passing wires through the cap, includes burying a sensor apparatus in the landfill prior to closing the landfill with the cap; providing a reader capable of communicating with the sensor apparatus via radio frequency (RF); placing an antenna above the barrier, spaced apart from the sensor apparatus; coupling the antenna to the reader either before or after placing the antenna above the barrier; providing power to the sensor apparatus, via the antenna, by generating a field using the reader; accumulating and storing power in the sensor apparatus; sensing a parameter of the landfill using the sensor apparatus while using power; and transmitting the sensed parameter to the reader via a wireless response signal. A system for measuring a parameter of a landfill is also provided.
Owner:BATTELLE ENERGY ALLIANCE LLC

Antenna coupling device

The present invention relates to an antenna coupling device (14) for coupling radio frequency signal from a communication device (10) having an internal first antenna, the communication device (10) operable in n frequency bands, where n>1 and n is an integer. The antenna coupling device (14) comprises a port (16) connected / connectable to a transmission line (18). A conducting surface of said antenna coupling device (14) has a geometric shape in the form of a tree structure (20) connected to said port (16). The tree structure (20) comprises a number, m, of branches, where m>=n, wherein said tree structure (20) comprises at least one branch bix for each frequency band I of said communication device (10), wherein I is an integer and 1<=I<=n, and x is an integer and 1<=x<=k (i), and the total number, m, of branches satisfy the following expressionwherein k (i) is a function of I, which only can obtain an integer value and is the total number of branches for frequency band.
Owner:SMARTEQ WIRELESS

Tap antenna unit

The tap antenna unit includes signal splitting circuitry, coupled to a coaxial cable which is servicing a consumer electronic device, such as a television set, for splitting off a signal from the coaxial cable; a filter coupled to an output of the signal splitting circuitry for selecting a low-level sharp frequency band in the energy spectrum of the coaxial cable; circuitry for demodulating a signal carried by the low-level frequency band; circuitry for modulating the output signal onto a carrier in an unlicensed frequency band; and an output antenna which is coupled to the modulating circuitry and which is capable of transmitting the output modulated signal over a limited transmitting-receiving area.
Owner:LOGITECH EURO SA

Communication systems for use with magnetic resonance imaging systems

InactiveUS7221159B2Affecting quality of communicationReduce stepsSensorsElectric/magnetic detectionTransceiverCommunications system
An antenna coupling enables communication across a barrier to radio frequencies. The antenna coupling comprises first and second antennas. The first antenna is adapted for positioning on a first side of the barrier, and is capable of receiving from and transmitting to a first transceiver disposed on the first side. The second antenna is adapted for positioning on a second side of the barrier, and is capable of receiving from and transmitting to a second transceiver on the second side. The interconnection of the first and second antennas through the barrier comprises the antenna coupling. The antenna coupling enables the first and second transceivers to communicate across the barrier over the desired range(s) of radio frequencies. In a related aspect, the antenna coupling may also include a filter interconnected between the first and second antennas to prevent radio frequencies outside of the desired range(s) from being transmitted across the barrier.
Owner:BAYER HEALTHCARE LLC

Parallel-plate electrode plasma reactor having an inductive antenna coupling power through a parallel plate electrode

The invention is embodied by a plasma reactor for processing a workpiece, including a reactor enclosure defining a processing chamber, a semiconductor window, a base within the chamber for supporting the workpiece during processing thereof, a gas inlet system for admitting a plasma precursor gas into the chamber, and an inductive antenna adjacent a side of the semiconductor window opposite the base for coupling power into the interior of the chamber through the semiconductor window electrode.
Owner:APPLIED MATERIALS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products