Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

89results about How to "Reduce X-ray exposure" patented technology

System and methods for advancing a catheter

An advancer system is described for moving an elongate medical device within a body. The system includes a drive unit having a motor. The drive unit is configured to translate movement of the motor to the device so as to alternately advance and retract the device relative to the body. The advancer system also includes a user-operable control system configured to control the drive unit. The control system can interface with a magnetic navigation system. The above-described system allows an operating physician to control catheter advancement and retraction while remaining outside an x-ray imaging field. Thus the physician is freed from repeated x-ray exposure.
Owner:STEREOTAXIS

System and method for controlling movement of a surgical tool

InactiveUS20060116634A1Less trainingMinimizing x-ray and contrast material exposureSurgical navigation systemsMedical devicesEndoscopeBiopsy needles
A system whereby a magnetic tip attached to a surgical tool is detected, displayed and influenced positionally so as to allow diagnostic and therapeutic procedures to be performed rapidly, accurately, simply, and intuitively is described. The tools that can be so equipped include catheters, guidewires, and secondary tools such as lasers and balloons, in addition biopsy needles, endoscopy probes, and similar devices. The magnetic tip allows the position and orientation of the tip to be determined without the use of x-rays by analyzing a magnetic field. The magnetic tip further allows the tool tip to be pulled, pushed, turned, and forcefully held in the desired position by applying an appropriate magnetic field external to the patient's body. A Virtual Tip serves as an operator control. Movement of the operator control produces corresponding movement of the magnetic tip inside the patient's body. Additionally, the control provides tactile feedback to the operator's hand in the appropriate axis or axes if the magnetic tip encounters an obstacle. The output of the control combined with the magnetic tip position and orientation feedback allows a servo system to control the external magnetic field by pulse width modulating the positioning electromagnet. Data concerning the dynamic position of a moving body part such as a beating heart offsets the servo systems response in such a way that the magnetic tip, and hence the secondary tool is caused to move in unison with the moving body part. The tip position and orientation information and the dynamic body part position information are also utilized to provide a display that allows three dimensional viewing of the magnetic tip position and orientation relative to the body part.
Owner:NEURO KINESIS CORP

System and method for radar-assisted catheter guidance and control

InactiveUS20050096589A1Less trainingMinimizing and eliminating useEndoscopesMedical devicesRadar systemsGuidance control
A Catheter Guidance Control and Imaging (CGCI) system whereby a magnetic tip attached to a surgical tool is detected, displayed and influenced positionally so as to allow diagnostic and therapeutic procedures to be performed is described. The tools that can be so equipped include catheters, guidewires, and secondary tools such as lasers and balloons. The magnetic tip performs two functions. First, it allows the position and orientation of the tip to be determined by using a radar system such as, for example, a radar range finder or radar imaging system. Incorporating the radar system allows the CGCI apparatus to detect accurately the position, orientation and rotation of the surgical tool embedded in a patient during surgery. In one embodiment, the image generated by the radar is displayed with the operating room imagery equipment such as, for example, X-ray, Fluoroscopy, Ultrasound, MRI, CAT-Scan, PET-Scan, etc. In one embodiment, the image is synchronized with the aid of fiduciary markers located by a 6-Degrees of Freedom (6-DOF) sensor. The CGCI apparatus combined with the radar and the 6-DOF sensor allows the tool tip to be pulled, pushed, turned, and forcefully held in the desired position by applying an appropriate magnetic field external to the patient's body. A virtual representation of the magnetic tip serves as an operator control. This control possesses a one-to-one positional relationship with the magnetic tip inside the patient's body. Additionally, this control provides tactile feedback to the operator's hands in the appropriate axis or axes if the magnetic tip encounters an obstacle. The output of this control combined with the magnetic tip position and orientation feedback allows a servo system to control the external magnetic field.
Owner:NEURO KINESIS CORP

System and method for radar-assisted catheter guidance and control

InactiveUS7280863B2Less trainingMinimizing and eliminating useMedical devicesEndoscopesRadar systemsTip position
A Catheter Guidance Control and Imaging (CGCI) system whereby a magnetic tip attached to a surgical tool is detected, displayed and influenced positionally so as to allow diagnostic and therapeutic procedures to be performed is described. The tools that can be so equipped include catheters, guidewires, and secondary tools such as lasers and balloons. The magnetic tip performs two functions. First, it allows the position and orientation of the tip to be determined by using a radar system such as, for example, a radar range finder or radar imaging system. Incorporating the radar system allows the CGCI apparatus to detect accurately the position, orientation and rotation of the surgical tool embedded in a patient during surgery. In one embodiment, the image generated by the radar is displayed with the operating room imagery equipment such as, for example, X-ray, Fluoroscopy, Ultrasound, MRI, CAT-Scan, PET-Scan, etc. In one embodiment, the image is synchronized with the aid of fiduciary markers located by a 6-Degrees of Freedom (6-DOF) sensor. The CGCI apparatus combined with the radar and the 6-DOF sensor allows the tool tip to be pulled, pushed, turned, and forcefully held in the desired position by applying an appropriate magnetic field external to the patient's body. A virtual representation of the magnetic tip serves as an operator control. This control possesses a one-to-one positional relationship with the magnetic tip inside the patient's body. Additionally, this control provides tactile feedback to the operator's hands in the appropriate axis or axes if the magnetic tip encounters an obstacle. The output of this control combined with the magnetic tip position and orientation feedback allows a servo system to control the external magnetic field.
Owner:NEURO KINESIS CORP

Apparatus and method for catheter guidance control and imaging

A system whereby a magnetic tip attached to a surgical tool is detected, displayed and positioned. A Virtual Tip serves as an operator control. Movement of the operator control produces corresponding movement of the magnetic tip inside the patient's body. Additionally, the control provides tactile feedback to the operator's hand in the appropriate axis or axes if the magnetic tip encounters an obstacle. The output of the control combined with the magnetic tip position and orientation feedback allows a servo system to control the external magnetic field by pulse width modulating the positioning electromagnet. Data concerning the dynamic position of a moving body part such as a beating heart offsets the servo systems response in such a way that the magnetic tip, and hence the secondary tool is caused to move in unison with the moving body part.
Owner:NEURO KINESIS CORP

System and method for a magnetic catheter tip

A system whereby a magnetic tip attached to a surgical tool is detected, displayed and influenced positionally so as to allow diagnostic and therapeutic procedures to be performed rapidly, accurately, simply, and intuitively is described. The tools that can be so equipped include catheters, guidewires, and secondary tools such as lasers and balloons, in addition biopsy needles, endoscopy probes, and similar devices. The magnetic tip allows the position and orientation of the tip to be determined without the use of x-rays by analyzing a magnetic field. The magnetic tip further allows the tool tip to be pulled, pushed, turned, and forcefully held in the desired position by applying an appropriate magnetic field external to the patient's body. A Virtual Tip serves as an operator control. Movement of the operator control produces corresponding movement of the magnetic tip inside the patient's body. Additionally, the control provides tactile feedback to the operator's hand in the appropriate axis or axes if the magnetic tip encounters an obstacle. The output of the control combined with the magnetic tip position and orientation feedback allows a servo system to control the external magnetic field by pulse width modulating the positioning electromagnet. Data concerning the dynamic position of a moving body part such as a beating heart offsets the servo systems response in such a way that the magnetic tip, and hence the secondary tool is caused to move in unison with the moving body part. The tip position and orientation information and the dynamic body part position information are also utilized to provide a display that allows three dimensional viewing of the magnetic tip position and orientation relative to the body part.
Owner:NEURO KINESIS CORP

Apparatus and method for generating a magnetic field

A system whereby a magnetic tip attached to a surgical tool is detected, displayed and influenced positionally so as to allow diagnostic and therapeutic procedures to be performed rapidly, accurately, simply, and intuitively is described. The tools that can be so equipped include catheters, guidewires, and secondary tools such as lasers and balloons, in addition biopsy needles, endoscopy probes, and similar devices. The magnetic tip allows the position and orientation of the tip to be determined without the use of x-rays by analyzing a magnetic field. The magnetic tip further allows the tool tip to be pulled, pushed, turned, and forcefully held in the desired position by applying an appropriate magnetic field external to the patient's body. A Virtual Tip serves as an operator control. Movement of the operator control produces corresponding movement of the magnetic tip inside the patient's body. Additionally, the control provides tactile feedback to the operator's hand in the appropriate axis or axes if the magnetic tip encounters an obstacle. The output of the control combined with the magnetic tip position and orientation feedback allows a servo system to control the external magnetic field by pulse width modulating the positioning electromagnet. Data concerning the dynamic position of a moving body part such as a beating heart offsets the servo systems response in such a way that the magnetic tip, and hence the secondary tool is caused to move in unison with the moving body part. The tip position and orientation information and the dynamic body part position information are also utilized to provide a display that allows three dimensional viewing of the magnetic tip position and orientation relative to the body part.
Owner:NEURO KINESIS CORP

RFID transducer alignment system

A radio frequency identification (RFID) system having the capacity to detect various geometric parameters of alignment. The described system is configured for use with dental x-ray, medical imaging and treatment, and customary and digital radiography apparatus, but is not restricted to such apparatus or applications. The system may include a multiplicity of RF transponders, RF tags, and RF readers, wherein each RF tag may include one or more carrier receive / data transmit coils and wherein each RF reader may include one or more carrier transmit / data receive coils, and wherein each coil of an RF tag or RF reader may resonate at one or more, and / or, at the same or differing frequencies. An RF tag located about an x-ray sensitive film or device, and an RF reader located about a dental x-ray machine or apparatus, are configured to be critically aligned, one to the other, rendering repeat imaging unnecessary.
Owner:ABR

Coplanar X-ray guided aiming arm for locking of intramedullary nails

A novel coplanar X-ray guided method and device for insertion of distal locking screws in intramedullary bone nails. The device has coplanar holes, which allow insertion of protective sleeves. Bone drill and bone screws can be inserted through the protective sleeves. Radiopaque target markers in the aiming arm enable the easy positioning of an X-ray source such that an X-ray beam is coplanar with the aiming arm transverse holes. After the X-ray source is accurately oriented, a single X-ray snapshot is enough to assess the exact distortion of the implanted intramedullary nail. The X-ray beam does not need to be coaxial with nail holes anymore. The aiming arm has a mobile portion and a fixed portion fastened to the nail, wherein said aiming arm can be adjusted, displacing the mobile portion over the fixed portion, to compensate for the distortion of the intramedullary nail after implanted. Once the aiming arm is precisely positioned, the aiming arm transverse holes and intramedullary nail holes are accurately aligned, protective sleeves are inserted through aiming arm holes, bone drills are drilled through the intramedullary nail holes and surrounding bone material, and bone screws are screwed, locking the intramedullary nail to the bone.
Owner:SYNTHES USA

3D medical anatomical image system using 2d images

A medical imaging system generates 3D anatomical images from acquired 2D anatomical images. The system includes a synchronization processor for providing a synchronization signal identifying a particular phase of heart operation of a particular patient. An image acquisition device acquires 2D anatomical images of a patient heart in angularly variable imaging planes over multiple different heart cycles at the particular phase of heart operation in response to the synchronization signal and in response to recorded data indicating imaging previously being performed at particular imaging plane angles. An image processor stores the recorded data to prevent imaging overlap at the particular imaging plane angles and to prevent unnecessary radiation exposure of the patient. The image processor processes 2D images acquired by the image acquisition device of the patient heart in multiple different imaging planes having relative angular separation, to provide a 3D image reconstruction of the patient heart
Owner:SIEMENS HEALTHCARE GMBH

System and methods for advancing a catheter

An advancer system is described for moving an elongate medical device within a body. The system includes a drive unit having a motor. The drive unit is configured to translate movement of the motor to the device so as to alternately advance and retract the device relative to the body. The advancer system also includes a user-operable control system configured to control the drive unit. The control system can interface with a magnetic navigation system. The above-described system allows an operating physician to control catheter advancement and retraction while remaining outside an x-ray imaging field. Thus the physician is freed from repeated x-ray exposure.
Owner:STEREOTAXIS

Magnetic targeting system for facilitating navigation

The present invention describes a magnetic targeting system suitable for guiding a biocompatible device to a target area within the body (in vivo) and method of using the same. The system includes a targeting member having a steering material and is attached to the biocompatible device. The system also includes at least one anchoring member constructed and arranged for the inclusion of a magnetic material effective for influencing the traversal of the steering material, in vivo. The magnetic material is configured and sized so as to positionable external of the anchoring member, in vivo. The magnetically influenced anchoring member interacts with the targeting member such that the biocompatible device is positionable relative to the target area. An extender and connector have threads indexed to a securing set screw to facilitate positioning and affixation of the biocompatible material
Owner:NUVASIVE

System and Methods for Advancing a Catheter

InactiveUS20080045892A1Reduce repeated x-ray exposureReduce X-ray exposureElectrotherapyDiagnosticsControl systemEngineering
An advancer system is described for moving an elongate medical device within a body. The system includes a drive unit having a motor. The drive unit is configured to translate movement of the motor to the device so as to alternately advance and retract the device relative to the body. The advancer system also includes a user-operable control system configured to control the drive unit. The control system can interface with a magnetic navigation system. The above-described system allows an operating physician to control catheter advancement and retraction while remaining outside an x-ray imaging field. Thus the physician is freed from repeated x-ray exposure.
Owner:STEREOTAXIS

Method and system for securing an intramedullary nail

A device, method and system adapted to determine a targeting position on a surgically implantable nail adapted to be used in internal fixation of a bone, the nail comprising a distal end and a proximal end, the device including an extension rod comprising a longitudinal axis and adapted to be detachably coupled to the proximal end of the nail, a bridge member adjustably secured to the extension rod and extending radially from the longitudinal axis of the extension rod, a position of the bridge member on the extension rod being rotationally and longitudinally adjustable with respect to the longitudinal axis of the extension rod, and a targeting arm adjustably coupled to the bridge member and extending from the bridge member toward the distal end of the locking nail, the targeting arm comprising a drill guide.
Owner:BENTON BLAKE

Pedicle access device

A pedicle access device that has particular application for positioning a pedicle screw during a minimally invasive spinal fusion surgical procedure. The pedicle access device includes a positioning needle having a hollow tube and a specially designed tip that conforms with a facet complex of a vertebra proximate a pedicle. A targeting needle having a pointed end is inserted through the hollow tube of the positioning needle, and is secured thereto so the tip of the targeting needle extends out of the end of the positioning needle. The tip of the targeting needle allows the positioning needle to be accurately positioned on the pedicle, and the specially configured tip of the positioning needle allows it to be secured thereto without slipping.
Owner:MI4SPINE

System for image scanning and acquisition with low-dose radiation

ActiveUS20120057674A1Reduced patient X-ray exposureReduce X-ray exposureTomographySensorsControl signalX-ray
A medical imaging system adaptively acquires anatomical images using a shape adaptive collimator including multiple different portions of X-ray absorbent material automatically adjustable to alter the dimensions of a spatial cross section of an X-ray beam of radiation into a non-rectangular shape, in response to a control signal. The synchronization processor provides a heart rate related synchronization signal derived from a patient cardiac function related parameter. The synchronization signal enables adaptive variation in timing of image acquisition within an individual heart cycle and between successive heart cycles of each individual image frame of multiple sequential image frames. The X-ray image acquisition device uses the shape adaptive collimator for acquiring anatomical images of the region of interest with reduced patient X-ray exposure in response to the synchronization signal. A display processor presents resultant images.
Owner:SIEMENS HEALTHCARE GMBH

Nuclear medical imaging device

An apparatus for imaging a field of view, according to an embodiment of the present invention, comprises an x-ray source positioned adjacent to the field of view, a source mask located between the x-ray source and the field of view having at least one source aperture defined therethrough, and an emission detector, such as a gamma camera, adjacent to the field of view. The apparatus may allow substantially concurrent x-ray imaging and gamma imaging of the field of view.
Owner:HIGHBROOK HLDG

Ct scanner with automatic determination of volume of interest

A CT scanner automatically determines a volume of change based upon anatomical changes in a patient. During surgery, the CT scanner takes a sufficient number of two-dimensional initial images using a full field of view. The CT scanner compares the initial images to pre-operative data. Based upon the comparison, the CT scanner automatically determines the volume of change plus some margin to define a volume of interest. The CT scanner then collimates an x-ray source to perform an intra-operative updated CT scan of the volume of interest. The CT scanner updates the pre-operative data with the data from the intra-operative updated CT scan of the volume of interest to form a fully updated three-dimensional CT image. The initial images and the pre-operative data can be taken at a lower resolution than the intra-operative updated CT scan of the volume of interest to reduce the x-ray exposure of the patient.
Owner:XORAN TECH

X-ray computer tomography apparatus

An X-ray computer tomography apparatus includes an X-ray tube, a two-dimensional array type X-ray detector, a rotating mechanism, a pair of collimators, a collimator moving mechanism which separately moves the pair of collimators in a direction almost parallel to a rotation axis, a reconstruction processing unit which reconstructs image data in a reconstruction range, and a collimator control unit. The collimator control unit controls the position of each collimator in accordance with the distance between an X-ray central plane corresponding to a cone angle 0° and an end face of the reconstruction range. The collimator moving mechanism moves each of the pair of collimators in the range from the outermost position corresponding to the maximum cone angle to the innermost position offset from a position corresponding to a cone angle of nearly 0° to the opposite side.
Owner:TOSHIBA MEDICAL SYST CORP

System and method for time-of-flight imaging

A system and method for imaging a subject includes a clock that generates a clock signal and a radiation source that directs photons through the subject in response to the clock signal. A detector system is included that detects the photons and a memory module records a time of detection of the photons by the detector system with respect to the clock signal. The system includes a processor that calculates a time of flight (TOF) of the photons from the radiation source to the detector system and compares the TOF to a reference TOF to determine a delay in the TOF attributable to the photons passing trough the subject.
Owner:MAYO FOUND FOR MEDICAL EDUCATION & RES

X-ray CT Photographic Apparatus

An X-ray CT photographic apparatus including: a beam shaping mechanism that regulates an irradiation range of an X-ray generated from an X-ray generator and shapes the X-ray into an X-ray cone beam; and a main body controller that changes a read region, where an X-ray detection signal is read in the X-ray detector, according to the irradiation range of the X-ray cone beam. The main body controller changes the irradiation range of the X-ray cone beam to an x-axis direction during an X-ray CT photography such that only a set CT photographic region is irradiated with the X-ray cone beam according to the set CT photographic region input through a CT photographic region setting unit. The main body controller changes a read region in an X-ray detector with respect to the x-axis direction in a detection surface of the X-ray detector during the X-ray CT photography.
Owner:MORITA MFG CO LTD

X-ray system

To reduce X-ray exposure while improving image quality, an area of interest is selected in the image. The image of the selected area is updated frequently, comparable to rate of updates used today for the whole image. The rest of the image is updated at a significantly lower rate. Since the area of interest normally is a small part of the overall area, the total exposure is reduced significantly. A fast X-ray shutter, placed near the X-ray source, blocks the radiation from areas outside the area of interest. The shutter automatically retracts when the complete image is updated. The area of interest can be selected by the user or automatically selected based on activity in the image. Since most of the exposures are taken at a reduced collimation angle, limited by the area of interest, the area of interest is imaged at reduced scatter and better quality.
Owner:IKOMED TECH

Three-dimensional coordinate-positioning drilling guiding system

The invention discloses a three-dimensional coordinate-positioning drilling guiding system. The guiding system comprises an x1 axis vernier caliper and an x2 axis vernier caliper arranged along an axis x, an axis z vernier caliper arranged along an axis z, an axis y vernier caliper arranged along an axis y, positioning needle fixers arranged on the x1 axis and the x2 axis, and a guide needle fixer on the axis Y, wherein the x2 axis vernier caliper and the x1 axis vernier caliper are parallel to each other. After fracture reposition, a body surface positioner is mounted on bones, projections of a target point and a reference point on the body surface are positioned by X-ray; the positioning needles are inserted in vertically to respectively confirm the coordinates of the target point and the reference point on the three-dimensional positioning rack x1 axis, x2 axis, and axis y relative to positioning needle points; the verniers on each axis can be regulated and fixed based on the coordinates; and drill bits and Kirschner wires are drilled in from the guide needle fixer. The guiding system has the advantages that application range is wide, drilling is accurate, and the drill bit or the Kirschner wire can be in optional size below 6mm.
Owner:王光明

X-ray CT photographic apparatus

An X-ray CT photographic apparatus including: a beam shaping mechanism that regulates an irradiation range of an X-ray generated from an X-ray generator and shapes the X-ray into an X-ray cone beam; and a main body controller that changes a read region, where an X-ray detection signal is read in the X-ray detector, according to the irradiation range of the X-ray cone beam. The main body controller changes the irradiation range of the X-ray cone beam to an x-axis direction during an X-ray CT photography such that only a set CT photographic region is irradiated with the X-ray cone beam according to the set CT photographic region input through a CT photographic region setting unit. The main body controller changes a read region in an X-ray detector with respect to the x-axis direction in a detection surface of the X-ray detector during the X-ray CT photography.
Owner:MORITA MFG CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products