Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1143 results about "Central plane" patented technology

Flexible back plate for flexible display

The invention relates to a flexible back plate for a flexible display. The flexible back plate comprises a structure layer and a laying layer, wherein the structure layer is of a honeycomb structure with negative Poisson ratio; the laying layer is evenly laid in the central plane of the structure layer; the structure layer is made of shape memory polymers or composite materials; the laying layer is made of carbon fibers; the laying layer is provided with an leading-out terminal provided with two electrodes; when the two electrodes are electrified, the laying layer generates heat to heat the structure layer to enable the structure layer to reach the glass-transition temperature of the material of the structure layer, and exerts an external force to the honeycomb structure to achieve the purpose of deforming the honeycomb, the shape of the honeycomb can be fixed after the heating is stopped, the size is increased in two directions, in this way, the size of the back plate is increased; when the honeycomb structure is in an unidirectional compression, the size is decreased in a plane, in this way, the size of the back plate is decreased; and the honeycomb structure with negative Poisson ratio has double-curvature characteristic. The flexible back plate has the following characteristics of being bendable, having double curvature, impact resistance and anti-shock performance, being capable of being driven intelligently, and being light and beautiful.
Owner:HARBIN INST OF TECH

Double layer papermakers fabric with pockets for bulk enhancement

InactiveUS7493923B2Impart surface roughnessSignificant formMachine wet endPress sectionEngineeringWeft yarn
A double layer papermakers' fabric that is particularly suitable for forming or through-air drying (TAD) of high bulk tissue and towel product is provided. The fabric includes a single warp yarn system interwoven with three weft yarn systems such that: a first of the weft yarn systems is located on the paper side (PS) surface of the fabric; a second of the weft yarn systems is located on the machine side (MS) surface of the fabric; and the third weft yarn system is located intermediate between the first and second weft yarn systems. The yarns of the first and second weft yarn systems are interwoven with the warp yarn system such that they are vertically stacked with respect to one another in the fabric. The yarns of the third weft yarn system are interwoven so as to be located in a central plane of the fabric that is intermediate of the first and second weft yarn systems, and each yarn of the third yarn system is located in between the vertically stacked pairs of weft yarns of the first and second weft yarn systems. The warp and weft yarn systems are interwoven according to an asymmetric design which provides generally rectangular pockets on each of the PS and MS of the fabric with the yarns of the third weft yarn system forming the “bottom” of each pocket. There may be from about 50 to 750 pockets per sq. in. of fabric, each ranging in depth from about 0.1 mm to about 1.0 mm in depth; these pockets impart unevenness to the fabric surface which assists in creating bulk in the sheet formed or conveyed thereon. The fabrics of the invention also offer low sheet contact area, typically less than 30% of the total fabric surface, and generally in the range of from 15% to about 20%. The fabrics are also highly air permeable to ensure good air flow and drainage of the sheet.
Owner:ASTENJOHNSON

Double layer papermakers fabric with pockets for bulk enhancement

A double layer papermakers' fabric that is particularly suitable for forming or through-air drying (TAD) of high bulk tissue and towel product is provided. The fabric includes a single warp yarn system interwoven with three weft yarn systems such that: a first of the weft yarn systems is located on the paper side (PS) surface of the fabric; a second of the weft yarn systems is located on the machine side (MS) surface of the fabric; and the third weft yarn system is located intermediate between the first and second weft yarn systems. The yarns of the first and second weft yarn systems are interwoven with the warp yarn system such that they are vertically stacked with respect to one another in the fabric. The yarns of the third weft yarn system are interwoven so as to be located in a central plane of the fabric that is intermediate of the first and second weft yarn systems, and each yarn of the third yarn system is located in between the vertically stacked pairs of weft yarns of the first and second weft yarn systems. The warp and weft yarn systems are interwoven according to an asymmetric design which provides generally rectangular pockets on each of the PS and MS of the fabric with the yarns of the third weft yarn system forming the “bottom” of each pocket. There may be from about 50 to 750 pockets per sq. in. of fabric, each ranging in depth from about 0.1 mm to about 1.0 mm in depth; these pockets impart unevenness to the fabric surface which assists in creating bulk in the sheet formed or conveyed thereon. The fabrics of the invention also offer low sheet contact area, typically less than 30% of the total fabric surface, and generally in the range of from 15% to about 20%. The fabrics are also highly air permeable to ensure good air flow and drainage of the sheet.
Owner:ASTENJOHNSON

Millimeter-wave 360-DEG omnidirectional-scan dielectric cylinder lens antenna

The invention discloses a millimeter-wave 360-DEG omnidirectional-scan dielectric cylinder lens antenna comprising three dielectric cylinder lenses, three feed source antenna arrays with scan ranges of 120 DEG and four round metal discs. One of the three dielectric cylinder lenses is respectively coaxially arranged among the four round metal discs, one of the three feed source antenna arrays is respectively arranged between the edges of two adjacent round metal discs, the difference between two of the three feed source antenna arrays on a horizontal projection surface is 120 DEG, and a phase central plane of each feed source antenna array is superposed with a focal plane of each dielectric cylinder lens. The invention realizes 360-DEG omnidirectional scan in the horizontal direction; the three dielectric cylinder lens antennas are partitioned by parallel round metal disc-shaped plates, and the scan of each homogeneous dielectric cylinder lens is not interfered by the other two lenses,thus the scanning beam of each layer of cylinder lens antenna is totally consistent; and the millimeter-wave 360-DEG omnidirectional-scan dielectric cylinder lens antenna can be conveniently connected with a printed integrated circuit. The millimeter-wave 360-DEG omnidirectional-scan dielectric cylinder lens antenna is applied to the fields of space flight communication, satellite communication, electronic countermeasure and the like.
Owner:ZHEJIANG UNIV

Indexable insert drill and a center insert therefore

A drill for chip removing machining, including a drill body that rotates around a center axis (C1) and has a rear end, and a front end from which there extends rearward an envelope surface in which two chip flutes each having an insert pocket are countersunk, and two replaceable cutting inserts, including a peripheral cutting insert mounted in a peripheral pocket, and a center insert, which is indexable and mounted in a center pocket that opens in the front end of the drill body and is delimited by a bottom surface, a rear end support surface, a side support surface of a partition wall, and an inside of a border adjacent to the envelope surface. The center insert includes an upperside and an underside between which a through hole for a tightening screw extends, and has an elongate basic shape that is mirror-symmetrical in relation to an imaginary, longitudinal central plane (P) with which a center axis (C3) of the hole coincides. One of two opposite, longitudinal side contact surfaces of the cutting insert which run parallel to each other and to the central plane (P), are urged against the side support surface of the center pocket. One of the two opposite end surfaces which are formed adjacent to chip-removing cutting edges at the short ends of the center insert, are urged against the rear end support surface of the center pocket. The side support surface of the center pocket is inclined in relation to the center axis (C1) of the drill body at an acute angle (ε) within the range of 3-8°. At each one of two diagonally opposite corners of the center insert, an intermediate surface is formed between the side contact surface and an end surface. The intermediate surface is shorter than the side contact surface and forms an obtuse angle (α) with the side contact surface. One of the intermediate surfaces is located in an area of a clearance space between the side support surface of the center pocket and the end support surface of the center pocket.
Owner:SANDVIK INTELLECTUAL PROPERTY AB
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products