Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

8554results about "Transmission elements" patented technology

Planetary-gear-type multiple-step transmission for vehicle

A planetary-gear-type multiple-step transmission including a stationary member, an input rotary member, an output rotary member, and first and second transmission units. The first transmission unit transmits a rotary motion from an input rotary member to the second transmission unit through first and second intermediate transmitting paths such that a speed of the rotary motion transmitted through the second intermediate transmitting path is lower than that of the rotary motion transmitted through the first intermediate transmitting path. The second transmission unit constitutes first, second, third, fourth and fifth rotary elements, each of which is provided by at least one of sun gears, carriers and ring gears of three planetary gear sets. The first rotary element is selectively connected to the second intermediate transmitting path, while being selectively connected to the stationary member. The second rotary element is selectively connected to the first intermediate transmitting path. The third rotary element is selectively connected to the first intermediate transmitting path, while being selectively connected to the stationary member. The fourth rotary element is connected to the output rotary member. The fifth rotary element is selectively connected to the second intermediate transmitting path.
Owner:TOYOTA JIDOSHA KK

Planetary-gear-type multiple-step transmission for vehicle

A planetary-gear-type multiple-step transmission including a stationary member, an input rotary member, an output rotary member, and first and second transmission units. The first transmission unit has first and second intermediate transmitting paths through which a rotary motion of the input rotary member is transmittable to the second transmission unit such that a speed of the rotary motion transmitted through the second intermediate transmitting path is lower than a speed of the rotary motion transmitted through the first intermediate transmitting path. The second transmission unit constitutes first, second, third and fourth rotary modules, each of which is provided by at least one of sun gears, carriers and ring gears of two planetary gear sets. The first rotary module is selectively connected to the second intermediate transmitting path, while being selectively connected to the stationary member. The second rotary module is selectively connected to the first intermediate transmitting path, while being selectively connected to the stationary member. The third rotary module is connected to the output rotary member. The fourth rotary module is selectively connected to the first intermediate transmitting path, while being selectively connected to the second intermediate transmitting path.
Owner:TOYOTA JIDOSHA KK

Method for automatic traction control in a hybrid electric vehicle

A method for providing traction control in vehicle powertrain systems is particularly adapted for traction control in a powertrain system of a hybrid electric vehicle comprising an internal combustion engine, an electric machine and a transmission that is operatively coupled to the electric machine and the engine and adapted to provide a transmission torque output in response to a transmission torque input received as a torque output from either or both of the engine and the electric machine. The method is adapted to utilize conventional traction control and engine control hardware, software and communication standards to implement traction control. In one embodiment of the invention, a conventional traction controller is used to detect a wheel spin condition and provide a plurality of first output torque command messages in response thereto. The plurality of first output torque command messages are used to obtain a torque reduction which is applied to a reference output torque to obtain a corresponding plurality of traction control output torque commands for the powertrain system during the wheel spin condition. A rate limit may also be applied to control the rate of change between successive ones of the traction control output torque commands in order to reduce the possibility of extension of the wheel spin condition, or recurrence of another wheel spin condition. Each traction control output torque command may be used to determine an associated traction control engine torque output command and traction control electric machine torque output command.
Owner:GM GLOBAL TECH OPERATIONS LLC

Moving object with fuel cells incorporated therein and method of controlling the same

InactiveUS20060113129A1Excellent fuel consumption and environmental propertyAvoid confusionDigital data processing detailsTransmission elementsFuel cellsElectrical battery
In a hybrid vehicle with fuel cells and an engine mounted thereon as energy output sources, the technique of the present invention adequately changes a working energy output source according to a driving state of the hybrid vehicle. The hybrid vehicle has the engine and a motor, both enabling power to be output to an axle. The hybrid vehicle also has fuel cells as a main electric power supply for driving the motor. The technique of the present invention changes the working energy output source between the fuel cells and the engine, in order to reduce the output of the fuel cells with consumption of a fuel for the fuel cells. With a decrease in remaining quantity of the fuel, the technique narrows a specific driving range, in which the motor is used as the power source. The technique also causes the engine to drive the motor as a generator and charges a battery not with electric power of the fuel cells but with electric power generated by the motor. This arrangement effectively prevents the fuel for the fuel cells from being excessively consumed in one driving mode. The fuel cells can thus be used preferentially in a specific driving state of the hybrid vehicle where the fuel cells have a high efficiency.
Owner:TOYOTA JIDOSHA KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products