Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

393 results about "Translation lookaside buffer" patented technology

A translation lookaside buffer (TLB) is a memory cache that is used to reduce the time taken to access a user memory location. It is a part of the chip's memory-management unit (MMU). The TLB stores the recent translations of virtual memory to physical memory and can be called an address-translation cache. A TLB may reside between the CPU and the CPU cache, between CPU cache and the main memory or between the different levels of the multi-level cache. The majority of desktop, laptop, and server processors include one or more TLBs in the memory-management hardware, and it is nearly always present in any processor that utilizes paged or segmented virtual memory.

Hardware support for superpage coalescing

InactiveUS20050108496A1Facilitates efficient superpage coalescingReducing latentcies associated with page copyingMemory adressing/allocation/relocationMicro-instruction address formationVirtual memoryData processing system
A method of assigning virtual memory to physical memory in a data processing system allocates a set of contiguous physical memory pages for a new page mapping, instructs the memory controller to move the virtual memory pages according to the new page mapping, and then allows access to the virtual memory pages using the new page mapping while the memory controller is still copying the virtual memory pages to the set of physical memory pages. The memory controller can use a mapping table which temporarily stores entries of the old and new page addresses, and releases the entries as copying for each entry is completed. The translation lookaside buffer (TLB) entries in the processor cores are updated for the new page addresses prior to completion of copying of the memory pages by the memory controller. The invention can be extended to non-uniform memory array (NUMA) systems. For systems with cache memory, any cache entry which is affected by the page move can be updated by modifying its address tag according to the new page mapping. This tag modification may be limited to cache entries in a dirty coherency state. The cache can further relocate a cache entry based on a changed congruence class for any modified address tag.
Owner:IBM CORP

Dynamic memory affinity reallocation after partition migration

A method of dynamically reallocating memory affinity in a virtual machine after migrating the virtual machine from a source computer system to a destination computer system migrates processor states and resources used by the virtual machine from the source computer system to the destination computer system. The method maps memory of the virtual machine to processor nodes of the destination computer system. The method deletes memory mappings in processor hardware, such as translation lookaside buffers and effective-to-real address tables, for the virtual machine on the destination computer system. The method starts the virtual machine on the destination computer system in virtual real memory mode. A hypervisor running on the destination computer system receives a page fault and virtual address of a page for said virtual machine from a processor of the destination computer system and determines if the page is in local memory of the processor. If the hypervisor determines the page to be in the local memory of the processor, the hypervisor returning a physical address mapping for the page to the processor. If the hypervisor determines the page not to be in the local memory of the processor, the hypervisor moves the page to local memory of the processor and returns a physical address mapping for said page to the processor.
Owner:IBM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products