Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1148 results about "Virtual memory" patented technology

In computing, virtual memory (also virtual storage) is a memory management technique that provides an "idealized abstraction of the storage resources that are actually available on a given machine" which "creates the illusion to users of a very large (main) memory."

Systems and Algorithm For Interfacing With A Virtualized Computing Service Over A Network Using A Lightweight Client

Systems and algorithm for controlling a virtualized computer service remotely through a client includes defining a virtual infrastructure in which a plurality of virtual machines are running on a hypervisor with at least one of the virtual machine executing an image processor algorithm. The image processor algorithm is configured to receive a connection request from the client for controlling the virtualized computer service (or simply, virtual service) available at a specific virtual machine. The request includes a plurality of connection parameters that describe the connection requirements of the client and is received at the virtual machine that is equipped with the image processor algorithm. The connection parameters are interrogated using the image processor algorithm to identify a specific virtual machine that provides the requested virtualized computer service. A framebuffer data for the identified virtual machine located in virtual memory is accessed and read directly through a hypervisor. The framebuffer data is processed into a plurality of image data packets using the image processor algorithm and transmitted to the client for presenting on a display device associated with the client. The image data packet grammar is tailored to the client and represents an image of the virtual machine display for the identified virtual machine.
Owner:CITRIX SYST INC

System and method for securely utilizing basic input and output system (BIOS) services

In accordance with one aspect of the current invention, the system comprises a memory for storing instruction sequences by which the processor-based system is processed, where the memory includes a physical memory and a virtual memory. The system also comprises a processor for executing the stored instruction sequences. The stored instruction sequences include process acts to cause the processor to: map a plurality of predetermined instruction sequences from the physical memory to the virtual memory, determine an offset to one of the plurality of predetermined instruction sequences in the virtual memory, receive an instruction to execute the one of the plurality of predetermined instruction sequences, transfer control to the one of the plurality of predetermined instruction sequences, and process the one of the plurality of predetermined instruction sequences from the virtual memory. In accordance with another aspect of the present invention, the system includes an access driver to generate a service request to utilize BIOS services such that the service request contains a service request signature created using a private key in a cryptographic key pair. The system also includes an interface to verify the service request signature using a public key in the cryptographic key pair to ensure integrity of the service request.
Owner:KINGLITE HLDG INC

Creating secure process objects

A secure process may be created which does not allow code to be injected into it, does not allow modification of its memory or inspection of its memory. The resources protected in a secure process include all the internal state and threads running in the secure process. Once a secure process is created, the secure process is protected from access by non-secure processes. Process creation occurs atomically in kernel mode. Creating the infrastructure of a process in kernel mode enables security features to be applied that are difficult or impossible to apply in user mode. By moving setup actions previously occurring in user mode (such as creating the initial thread, allocating the stack, initialization of the parameter block, environment block and context record) into kernel mode, the need of the caller for full access rights to the created process is removed. Instead, enough state is passed from the caller to the kernel with the first system call so that the kernel is able to perform the actions previously performed using a number of calls back and forth between caller and kernel. When the kernel returns the handle to the set-up process, some of the access rights accompanying the handle are not returned. Specifically, those access rights that enable the caller to inject threads, read/write virtual memory, and interrogate or modify state of the threads of the process are not returned to the caller.
Owner:MICROSOFT TECH LICENSING LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products