Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

871 results about "Rotational symmetry" patented technology

Rotational symmetry, also known as radial symmetry in biology, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which it looks exactly the same for each rotation.

Apparatus and methods for determining overlay of structures having rotational or mirror symmetry

Disclosed are overlay targets having flexible symmetry characteristics and metrology techniques for measuring the overlay error between two or more successive layers of such targets. In one embodiment, a target includes structures for measuring overlay error (or a shift) in both the x and y direction, wherein the x structures have a different center of symmetry (COS) than the y structures. In another embodiment, one of the x and y structures is invariant with a 180° rotation and the other one of the x and y structures has a mirror symmetry. In one aspect, the x and y structures together are variant with a 180° rotation. In yet another example, a target for measuring overlay in the x and/or y direction includes structures on a first layer having a 180 symmetry and structures on a second layer having mirror symmetry. In another embodiment, a target for determining overlay in the x and/or y direction includes structures on a first layer and structures on a second layer, wherein the structures on the first layer have a COS that is offset by a known amount from the COS of the structures on the second layer. In a specific implementation, any of the disclosed target embodiments may take the form of device structures. In a use case, device structures that have an inherent 180° rotational symmetry or a mirror symmetry in each of the first and second layers are used to measure overlay in a first layer and a second layer. Techniques for imaging targets with flexible symmetry characteristics and analyzing the acquired images to determine overlay or alignment error are disclosed.
Owner:KLA TENCOR TECH CORP

Compact relativity backward wave oscillator (RBWO) with adjustable low-frequency-range frequency

The invention discloses a compact relativity backward wave oscillator (RBWO) with an adjustable low-frequency-range frequency, and the oscillator provided by the invention is used for solving the problems that the RBWO size in a low frequency range is great, and the output microwave frequency is hard to adjust. The compact RBWO is in rotational symmetry with respect to a central axis, and composed of a cathode base, a cathode, an anode outer barrel, a stop neck, a slow wave structure, an inner conductor, a collector, a microwave output port, a solenoid field, two rows of supporting rods, a mode converter, a radiation port and a sealing plate; the slow wave structure is composed of five slow wave blades, the inner surface of each slow wave blade is in a trapezoid structure; the left end face of the collector is provided with an annular groove; the left end of the mode converter is cylindrical, and the right end of the mode converter is in a tapered structure; the radiation port is cylindrical, the left end of the radiation port is in a tapered structure and the right end of the radiation port is cylindrical; the sealing plate is pressed on the radiation port; and the frequency of the output microwave is adjusted by virtue of adjusting the semi-diameter R3 of the inner conductor. The compact RBWO has the advantages of compact structure and convenient and adjustable work frequency, thereby being beneficial to outputting a long pulse of the microwave.
Owner:NAT UNIV OF DEFENSE TECH

Microlithography reduction objective and projection exposure apparatus

A projection objective formed from six mirrors arranged in a light path between an object plane and an image plane is provided. The projection objective, in some examples, is characterized by having a physical distance between the vertexes of adjacent mirrors that is large enough to allow for the six mirrors to have sufficient thickness and stability properties to prevent surface deformations due to high layer tensions. In some embodiments, mirror thickness are such that surface deformations are prevented with mirrors having layer tensions lower than 350 MPa. Mirror surfaces may comprise multilayer systems of Mo/Be or Mo/Si layer pairs. In some examples, the physical distance between a vertex of the third mirror and a vertex of the sixth mirror (S3S6) satisfies the following relationship: 0.3×(a used diameter of the third mirror S3+a used diameter of the sixth mirror S6)<S3S6. In some examples, a ratio of a physical distance between a vertex of the first mirror and a vertex of the third mirror (S1S3) to a physical distance between the vertex of the first mirror and a vertex of the second mirror (S1S2) is within the range of: 0.5<S1S3/S1S2<2. In some examples, the physical mirror surfaces of the mirrors have a rotational symmetry with respect to a principal axis (PA). In some examples, all physical mirror surfaces are aspherical. In some examples, at most five physical mirror surfaces are aspherical. Other examples are provided, along with microlithography projection exposure apparatuses and processes for producing a microelectronic device.
Owner:CARL ZEISS STIFTUNG

Lane setting at road intersection and corresponding traffic light control method

A lane setting at a road intersection and a corresponding traffic light control method. It does not distinguish between primary and secondary roads, so that the number of entrance and exit lanes of each main phase is kept equal; the entrance lanes are divided into three parts: "entrance guide lane", "peripheral guide lane" and "bus and right-turn lane"; according to the direction of travel Arrange the lanes, light groups, signal groups and phases symmetrically on the horizontal axis of the horizontal axis; at the intersection, run the main phase of A going straight——B going straight——A turning left (including U-turn)——B turning left (including U-turn); The "peripheral traffic lights" alternately operate the two phases of straight-going vehicles moving forward and left-turning (including U-turn) vehicles moving forward, and an evergreen phase and "electronic police" for directing right-turning vehicles and buses to pass; according to the number of left-turning vehicles Decide whether to control the clearance of pedestrian crossings in units of full or half-way. This method can make the number of lanes passing by each phase of the intersection reach the maximum on the basis of equilibrium, and is conducive to the priority of public transportation and the convenience of pedestrians.
Owner:胡又宏 +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products