Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Gear shifting completion determining device and gear shifting completion determining method

a technology of gear shifting and completion determination, which is applied in the direction of gearing control, gearing elements, belts/chains/gearrings, etc., can solve the problems of gear train hardware likely to suffer deflection

Inactive Publication Date: 2009-06-02
TOYOTA JIDOSHA KK
View PDF9 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0009]An object of the present invention is to provide a gear shifting completion determining device and a gear shifting completion determining method that can appropriately determine completion of gear shifting.
[0011]According to this invention, when the stroke amount of the actuator reaches the threshold value set based on the operating state of the vehicle, it is determined that gear shifting of the transmission has completed. A sleeve and a gear would not readily mesh with each other when the vehicle is stopped, for example. In this case, the hardware such as the gear train would likely suffer deflection due to the load applied to the transmission by the actuator. In contrast, the sleeve and the gear would readily mesh with each other while the vehicle is running, compared to the standstill state, so that the hardware such as the gear train and the actuator would hardly suffer deflection. Accordingly, the threshold value is set to a value in the direction where the sleeve and the gear would mesh with each other more firmly when the vehicle speed is lower than when the vehicle speed is higher. In this manner, it is possible to set an appropriate threshold value taking account of deflection when the hardware such as the gear train and the actuator would likely suffer deflection. This can suppress erroneous determination that the gear shifting has completed even if the gear shifting has not finished yet. On the other hand, in the case where deflection would hardly occur, it is possible to set an appropriate threshold value taking no account of deflection. This can suppress the undesired situation where it is determined that the gear shifting has completed at a timing later than the actual completion timing of the gear shifting. As a result, it is possible to provide a gear shifting completion determining device capable of appropriately determining completion of the gear shifting.
[0013]According to this invention, the threshold value is set to a value in the direction where the parts (for example, sleeve and gear) would mesh with each other more firmly when the vehicle speed is lower than when the vehicle speed is higher. As such, it is possible to set an appropriate threshold value taking account of deflection during the stopped state of the vehicle, for example, when the hardware such as the gear train would likely suffer deflection. As such, it is possible to suppress erroneous determination that the gear shifting has completed even if the gear shifting has not finished yet. Further, an appropriate threshold value taking no account of deflection can be set while the vehicle is running or the like when the hardware such as the gear train would hardly suffer deflection. Thus, it is possible to suppress determination of completion of gear shifting at a timing later than the actual completion timing of the gear shifting. As a result, completion of the gear shifting can be determined appropriately.
[0017]According to this invention, when the stroke amount of the actuator has reached a threshold value that is set based on an operating state of the vehicle, it is determined that the gear shifting of the transmission has completed. A sleeve and a gear would not readily mesh with each other when the vehicle is stopped, for example. In this case, the hardware such as the gear train would likely suffer deflection due to the load applied to the transmission by the actuator. In contrast, the sleeve and the gear would readily mesh with each other while the vehicle is running, compared to the standstill state, so that the hardware such as the gear train and the actuator would hardly suffer deflection. Accordingly, the threshold value is set to a value in the direction where the sleeve and the gear would mesh with each other more firmly when the vehicle speed is lower than when the vehicle speed is higher. In this manner, it is possible to set an appropriate threshold value taking account of deflection when the hardware such as the gear train and the actuator would likely suffer deflection. This can suppress erroneous determination that the gear shifting has completed even if the gear shifting has not finished yet. On the other hand, in the case where deflection would hardly occur, it is possible to set an appropriate threshold value taking no account of deflection. This can suppress the undesired situation where it is determined that the gear shifting has completed at a timing later than the actual completion timing of the gear shifting. As a result, it is possible to provide a gear shifting completion determining method capable of appropriately determining completion of the gear shifting.
[0019]According to this invention, the threshold value is set to a value in the direction where the parts (for example, sleeve and gear) would mesh with each other more firmly when the vehicle speed is lower than when the vehicle speed is higher. As such, it is possible to set an appropriate threshold value taking account of deflection during the stopped state of the vehicle, for example, when the hardware such as the gear train would likely suffer deflection. As such, it is possible to suppress erroneous determination that the gear shifting has completed even if the gear shifting has not finished yet. Further, an appropriate threshold value taking no account of deflection can be set while the vehicle is running or the like when the hardware such as the gear train would hardly suffer deflection. Thus, it is possible to suppress determination of completion of gear shifting at a timing later than the actual completion timing of the gear shifting. As a result, completion of the gear shifting can be determined appropriately.

Problems solved by technology

In this case, the hardware such as the gear train would likely suffer deflection due to the load applied to the transmission by the actuator.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Gear shifting completion determining device and gear shifting completion determining method
  • Gear shifting completion determining device and gear shifting completion determining method
  • Gear shifting completion determining device and gear shifting completion determining method

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0028]Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following, the same portions have the same reference characters allotted, and their designation and function are identical. Thus, detailed description thereof will not be repeated.

[0029]Referring to FIG. 1, a vehicle incorporating a gear shifting completion determining device according to an embodiment of the present invention will be described. The vehicle 100 is a FF (Front drive Front engine) vehicle. The vehicle to which the gear shifting completion determining device of the present invention will be mounted is not restricted to a FF vehicle.

[0030]Vehicle 100 is a clutch-pedalless vehicle in which a constant mesh-type gear transmission as of a conventional manual transmission and a clutch are activated by actuators to establish a desired gear. In vehicle 100, it is possible to select an auto shift mode, in which up-shift and down-shift are conducted based on a map d...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The ECU executes a program including the step of setting a threshold value A to be compared with a stroke amount of an actuator for determining whether gear shifting has completed or not, taking no account of a deflection amount C of the hardware due to the shift load, when the vehicle speed V is higher than a predetermined vehicle speed V(0), and the step of setting a threshold value B to be compared with the stroke amount of the actuator for determining whether gear shifting has completed or not, to a value obtained by adding the deflection amount C of the hardware due to the shift load to the threshold value A used when the vehicle speed V is not lower than V(0), when the vehicle speed V is lower than the predetermined vehicle speed V(0).

Description

[0001]This nonprovisional application is based on Japanese Patent Application No. 2005-276413 filed with the Japan Patent Office on Sep. 22, 2005, the entire contents of which are hereby incorporated by reference.BACKGROUND OF THE INVENTION[0002]1. Field of the Invention[0003]The present invention relates to a gear shifting completion determining device and a gear shifting completion determining method, and particularly to a technique of appropriately determining completion of gear shifting in a transmission in which the gear shifting is effected by an actuator, in accordance with an operating state of a vehicle.[0004]2. Description of the Background Art[0005]Conventionally, in a transmission having a gear train of constant mesh gears, a technique of selecting a gear by moving a sleeve by an actuator is known. In such a transmission, particularly at the time of gear shifting during the stopped state of the vehicle, there may occur a phenomenon where the sleeve and the gear are out o...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(United States)
IPC IPC(8): F16H59/00
CPCF16H59/68Y10T477/65Y10T74/1926F16H2059/6807
Inventor OTSUBO, MASAAKI
Owner TOYOTA JIDOSHA KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products