Average error classification cost minimized classifier integrating method
A classifier and weak classifier technology, applied in the direction of instruments, character and pattern recognition, computer components, etc., can solve problems such as the difficulty of integrated learning methods
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
Embodiment 1
[0130] Combine below figure 1 Describe the specific process steps of a classifier integration method for multi-category cost-sensitive learning provided by the present invention. The method includes the following steps:
[0131] S1. Obtain a training sample set S;
[0132] S2. Initialize sample weights and assign initial values, Among them, i=1,..., m, l=1,..., K, y i ∈ {1, 2, ..., K}, Z 0 for The normalization factor of c(y i , l) means y i The cost of class being wrongly divided into l class, m is the number of training samples;
[0133] S3. Iterate T times, train to obtain T best weak classifiers, and realize through steps S31-S33:
[0134] S31. Based on weighted value The training sample set S trains the weak classifier, t=1,...,T, through steps S311-S313 to achieve: S311, the division of the corresponding sample set S, calculate where j=1,...,n t , l represents the class in the multi-classification problem, x i represents the i-th sample, express The ...
Embodiment 2
[0145] Utilize the classifier integration method of multi-classification cost-sensitive learning of the present invention can realize a kind of multi-classification continuous AdaBoost integrated learning method, and its similarity with embodiment one is no longer repeated, and its difference is:
[0146] The method for assigning initial values to the training samples in step S2 is: i=1,...,m,l=1,...,K,Z 0 is a normalization factor, where c(i, i)=0, and c(i, j)=1 when i≠j. At this time, the average misclassification cost is simplified to the training error rate, and the classifier ensemble method for multi-classification cost-sensitive learning described in Embodiment 1 is simplified to a new multi-classification continuous AdaBoost ensemble learning method.
[0147] The method of the present invention introduces K weights to each sample, and when considering whether the target can be correctly classified, attention is paid to its opposite. equivalent to The l label su...
Embodiment 3
[0150] A kind of classifier ensemble method of multi-classification cost-sensitive learning proposed by the present invention and a kind of multi-classification continuous AdaBoost integrated learning method are used in practical application below, and integrate with the existing multi-classification continuous AdaBoost based on Bayesian statistical inference Compare learning methods.
[0151] The data selects the wine data set and random data set (Random data) on the UCI data set. The wine data has 3 types of labels, and the random data set is randomly generated. The random data used in the experiment uses the random matrix generation function rand(n) in MATLAB to generate an n×n matrix, intercepts the first d columns to obtain n samples with d attributes, and then divides the samples into 3 categories to obtain a random 3 Categorical datasets. The representativeness of the random data set is determined by the insignificant difference between the classes and the indistinct i...
PUM
Login to View More Abstract
Description
Claims
Application Information
Login to View More - R&D
- Intellectual Property
- Life Sciences
- Materials
- Tech Scout
- Unparalleled Data Quality
- Higher Quality Content
- 60% Fewer Hallucinations
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2025 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com



