Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Three-dimensional seismic isolation device with vertical early rigidity capable of being preset

A vertical vibration isolation, three-dimensional technology, applied in the direction of earthquake resistance, building components, building structure, etc., can solve the problems of reducing the cost of vibration isolation, shortening the effective working length of the spring, inability to stretch and consume energy, and achieve buffer tension. Effects of tensile and compressive shocks, reduced wind and shock costs, and reduced risk of overturning

Pending Publication Date: 2017-03-15
ANHUI XINZE TECH CO LTD
View PDF9 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Although the scheme described in this patent application can improve the tensile strength of the three-dimensional seismic isolation device to resist the huge tension generated by the swaying or even overturning of high-rise buildings in an earthquake, the following deficiencies still exist: 1. The spring isolation The support can only be compressed for energy consumption and shock absorption, but cannot be stretched for energy consumption and shock absorption; 2. The spring isolation support cannot preset the early stiffness, which is not convenient for presetting the seismic intensity to reduce the cost of isolation
However, this invention still has the following disadvantages: 1. The load connecting rod is balanced under the joint action of two groups of disc springs. Although the preload of the two groups of disc springs can be adjusted, no matter how they are adjusted, the The force of the disc spring on the load connecting rod is a set of equal and opposite forces. Just applying any external force on the load connecting rod will destroy this balance and deform the two sets of disc springs. Therefore, the 2. In this invention, two sets of disk springs must be used together to provide damping when the damper is under compression or tension load, which not only causes a certain waste, but also makes the damper greatly increased in length
It can be seen that although the stiffness of the spring in the patent application scheme can be changed, the effective working length of the spring is not only significantly shortened, but also can only be compressed for energy consumption and vibration reduction, and cannot be stretched for energy consumption and vibration reduction.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Three-dimensional seismic isolation device with vertical early rigidity capable of being preset
  • Three-dimensional seismic isolation device with vertical early rigidity capable of being preset
  • Three-dimensional seismic isolation device with vertical early rigidity capable of being preset

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0039] see figure 1 , the three-dimensional isolation device in this example consists of laminated rubber isolation bearings and vertical isolation bearings connected in series up and down.

[0040] see figure 1 and Figure 4 , the laminated rubber shock-isolation bearing includes an upper connecting plate 14, a lower connecting plate 15, a laminated rubber pad 17 clamped between the upper and lower connecting plates and six tensile steel cables 16; wherein, the upper Both the connecting plate 14 and the lower connecting plate 15 are disc-shaped, and the edge of the upper connecting plate 14 is provided with mounting holes 13; the main body of the laminated rubber pad 17 is alternately composed of a layer of rubber 17-1 and a layer of steel plate 17-2 After lamination, it is molded and vulcanized, and a rubber protective layer 17-3 is naturally formed around it during the process of molded vulcanization. The upper and lower end surfaces of the main body of the laminated r...

example 2

[0052] This example has the following differences from Example 1:

[0053] see Figure 7-9 , the first group of preloaded steel cables 8 and the second group of preloaded steel cables 9 are composed of three preloaded steel cables. Moreover, the distance between the first group of preloaded steel cables 8 and the axis of the guide sleeve is equal to the distance between the second group of preloaded steel cables 9 and the axis of the guide sleeve.

[0054] see Figure 7-9 , the upper head of the first group of preloaded steel cables 8 and the lower head of the second group of preloaded steel cables 9 are respectively fixed on the driving platen 5 and the base by using cable self-locking anchors 18 instead of the eyebolts in Example 1 3 on.

[0055] see Figure 10-12 , and combined with Figure 7 , the cable self-locking anchor 18 is composed of a mounting hole arranged on the mounting plate 18-1, a jaw 18-2 and a locking bolt 18-4, wherein the mounting plate 18-1 is the d...

example 3

[0059] see Figures 13 to 15 , The difference between this example and Example 2 is that the first group of preloaded steel cables 8 and the second group of preloaded steel cables 9 are composed of five preloaded steel cables.

[0060] Other implementations of this example other than the above are the same as Example 2.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention discloses a three-dimensional seismic isolation device with vertical early rigidity capable of being preset. The device comprises a laminated rubber seismic isolation support and a vertical seismic isolation support which are vertically and sequentially connected in series. The device is characterized in that a back pressing device is arranged in a guide sleeve of the vertical seismic isolation support and comprises two groups of prepressing steel cables and two floating pressing plates, wherein each group comprises at least three prepressing steel cables, the two groups of prepressing steel cables are distributed in a central hole of a cylindrical helical compression spring separately in a linear mode, one ends of one group of prepressing steel cables are fixed to the floating pressing plate adjacent to a driving pressing plate separately, and the other ends of the group of prepressing steel cables penetrate through the floating pressing plate adjacent to a base to be fixed to the base separately; one ends of the other group of prepressing steel cables are fixed to the floating pressing plate adjacent to the base separately, and the other ends of the other group of prepressing steel cables penetrate through the floating pressing plate adjacent to the driving pressing plate to be fixed to the driving pressing plate separately; the two groups of prepressing steel cables are tensioned, so that the cylindrical helical compression spring is always clamped between the two floating pressing plates.

Description

technical field [0001] The invention relates to a building anti-vibration (or shock) device, in particular to a three-dimensional shock-isolation device in which a sandwich steel plate rubber pad is connected in series with a vertical shock-isolation support. Background technique [0002] The seismic isolation device is an anti-seismic isolation device installed between the building and the foundation. The early seismic isolation devices were mainly two-dimensional isolation bearings (laminated rubber isolation bearings) composed of rubber and thin steel plates alternately laminated, which could only isolate the horizontal component of seismic waves. With the improvement of people's understanding of the multi-dimensional characteristics of earthquakes, three-dimensional seismic isolation devices have gradually attracted the attention of researchers in this field. The most common three-dimensional isolation device is composed of laminated rubber isolation bearings connected ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): E04B1/98E04B1/36E04H9/02
CPCE04B1/36E04H9/021
Inventor 沈珊胡济福胡济全
Owner ANHUI XINZE TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products