Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Methods and system for starting a vehicle

a technology of engine and starting system, applied in the direction of engine starters, electric motor starters, machines/engines, etc., can solve the problems that the starting system may not be cost-effective for some engine applications, and achieve the effect of reliably starting an engine, reducing the amount of torque, and boosting driveline outpu

Active Publication Date: 2020-07-30
FORD GLOBAL TECH LLC
View PDF0 Cites 6 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0002]A vehicle may include a belt integrated starter / generator (BISG) to start an internal combustion engine and to charge a battery. The BISG may also provide torque to the engine when the engine is operating (e.g., combusting fuel and rotating) to boost driveline output. A BISG and its accompanying battery may be sized to provide robust engine starting when the engine stops at a position that requires a larger amount of torque to rotate the engine in a forward direction and to achieve a cranking speed that is sufficient for engine starting during cold ambient conditions. However, such a BISG may not be cost effective for some engine applications. Therefore, it may be desirable to provide a way of starting an engine with a reduced amount of torque so that a smaller BISG and battery may reliably start an engine without having a large excess torque capacity.
[0004]By rotating the engine crankshaft in a reverse direction that is opposite a direction that the engine crankshaft rotates when it is combusting fuel, it may be possible to provide the technical result of starting an engine with a BISG and battery that has a lower output torque capacity. In particular, the engine crankshaft may be rotated in a reverse direction and then stopped. Once an engine start request is issued, the BISG may rotate the engine crankshaft in a forward direction to start the engine. The engine crankshaft angular rotational distance at which the engine exerts a higher compression and friction losses when the engine is rotated in the forward direction may be increased by first rotating the engine in a reverse direction. By increasing the crankshaft angular rotational distance before compression and friction losses increase when the engine is rotated, it may be possible for the engine to reach a higher cranking speed. Rotating the engine at a higher cranking speed may allow the engine's inertia to help the BISG rotate the engine trough top-dead-center compression stroke of a cylinder so that the engine may be started with less BISG torque as compared to if the engine stopped near top-dead-center compression stroke of a cylinder.
[0005]The present description may provide several advantages. In particular, the approach may improve engine starting robustness. Further, the approach may reduce system cost by enabling robust engine starting via a BISG with lower torque output capacity. In addition, the approach may be implemented in several ways that may help to reduce electrical power consumption.

Problems solved by technology

However, such a BISG may not be cost effective for some engine applications.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Methods and system for starting a vehicle
  • Methods and system for starting a vehicle
  • Methods and system for starting a vehicle

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0013]The present description is related to starting an engine via a BISG. In particular, the present description is related to adjusting an engine stopping position and conserving electrical power so that the possibility of starting an engine may be improved. Further, adjusting the engine stopping position may enable robust engine starting via a BISG with lower output torque capacity. The engine may be of the type shown in FIG. 1. The engine may be included in a driveline of the type shown in FIG. 2. The engine may be stopped and started according to the sequence shown in FIG. 3. The engine may be operated according to the method of FIG. 4.

[0014]Referring to FIG. 1, internal combustion engine 10, comprising a plurality of cylinders, one cylinder of which is shown in FIG. 1, is controlled by electronic engine controller 12. The controller 12 receives signals from the various sensors shown in FIGS. 1 and 2 and employs the actuators shown in FIGS. 1 and 2 to adjust engine and drivelin...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

Systems and methods for operating an internal combustion engine that may be automatically stopped and started are described. In one example, an engine is rotated in a reverse direction after an engine stop so that a belt integrated starter / generator may rotate the engine in a forward direction and utilize the inertia of the engine to rotate trough top-dead-center compression stroke, thereby starting the engine.

Description

FIELD[0001]The present description relates to methods and a system for starting an engine that includes a belt integrated starter / generator.BACKGROUND AND SUMMARY[0002]A vehicle may include a belt integrated starter / generator (BISG) to start an internal combustion engine and to charge a battery. The BISG may also provide torque to the engine when the engine is operating (e.g., combusting fuel and rotating) to boost driveline output. A BISG and its accompanying battery may be sized to provide robust engine starting when the engine stops at a position that requires a larger amount of torque to rotate the engine in a forward direction and to achieve a cranking speed that is sufficient for engine starting during cold ambient conditions. However, such a BISG may not be cost effective for some engine applications. Therefore, it may be desirable to provide a way of starting an engine with a reduced amount of torque so that a smaller BISG and battery may reliably start an engine without hav...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): F02N11/08F02N11/06B60W10/06B60W10/08
CPCB60W10/08F02N11/0844B60W10/06F02N11/06F02N2200/121F02N11/0814F02N19/005F02N2019/008F02N11/04F02N2019/007
Inventor PETTERSSON, LARS NIKLASJOHNSON, SAMUEL
Owner FORD GLOBAL TECH LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products