Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

System and method for processing data signals

a data signal and processing system technology, applied in the field of processing data signals, can solve the problems of laborious and time-consuming processes, reducing the number of data measurements required for image/signal reconstruction, and capturing and processing data related to the underlying subject, so as to improve the numerical accuracy of significant coefficients

Active Publication Date: 2012-04-17
GENERAL ELECTRIC CO
View PDF8 Cites 7 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0007]Briefly in accordance with one aspect of the technique a signal processing method is provided. The method provides for initializing a residual data signal representative of an acquired data signal, determining a significant coefficient corresponding to the residual data signal, updating the residual data signal using the significant coefficient to generate updated residual data signal, iteratively determining significant coefficients to generate a plurality of significant coefficients using the updated residual data signal, updating the plurality of significant coefficients by using a successive approximation technique to improve the numerical accuracy of the significant coefficients, and reconstructing a data signal using the updated plurality of significant coefficients. Systems and apparatus that afford functionality of the type defined by this method may be provided by the present technique.
[0008]In accordance with a further aspect of the present technique a system is provided. The system includes an acquisition subsystem configured to obtain data from an object and a processing subsystem in operational communication with the data acquisition subsystem. The processing subsystem further comprises a signal processing platform configured to initialize a residual data signal representative of an acquired data signal, determine a significant coefficient corresponding to the residual data signal, update the residual data signal using the significant coefficient to generate an updated residual data signal, iteratively determine significant coefficients to generate a plurality of significant coefficients using the updated residual data signal, update the plurality of significant coefficients by using a successive approximation technique, to improve the numerical accuracy of the significant coefficients, and reconstruct a data signal using the updated plurality of significant coefficients.

Problems solved by technology

Furthermore, compressed sensing reduces the number of data measurements required for image / signal reconstruction.
However, capturing and processing data related to the underlying subject involve laborious and time-consuming processes.
By way of example, performing a Magnetic Resonance Imaging (MRI) scan of a patient, performing a three-dimensional (3D) CT scan of a patient, measuring a 3D nuclear magnetic resonance spectrum, and conducting a 3D seismic survey typically entail time-consuming processes.
Also, if an assumption about the compressible nature of the images is made, the methods used for image reconstruction may require substantial processing time.
As the number of selected elements increases, the QR decomposition step takes significant computational time.
Also, all the forward projected data wavelets need to be stored, thereby increasing demands on storage means.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • System and method for processing data signals
  • System and method for processing data signals
  • System and method for processing data signals

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0015]FIG. 1 is a block diagram of an exemplary system 10 for processing image data, in accordance with aspects of the present technique. The system 10 may be configured to acquire image data from an object or a patient 12 via an image acquisition device 14. Although the present technique is described with reference to image data, it may be noted that the present technique may also find application with other data signals, such as, but not limited to audio signals, video signals, and the like. In one embodiment, the image acquisition device 14 may include a probe, where the probe may include an invasive probe, or a non-invasive or external probe, such as an external ultrasound probe, that is configured to aid in the acquisition of image data. Also, in certain other embodiments, image data may be acquired via one or more sensors (not shown) that may be disposed on the object or the patient 12. By way of example, the sensors may include physiological sensors (not shown) such as electr...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A signal processing method include steps initializing a residual data signal representative of an acquired data signal, determining a significant coefficient corresponding to the residual data signal, updating the residual data signal using the significant coefficient to generate updated residual data signal, iteratively determining significant coefficients to generate a plurality of significant coefficients using the updated residual data signal, updating the plurality of significant coefficients by using a successive approximation technique, to improve the numerical accuracy of the significant coefficients and reconstructing a data signal using the updated plurality of significant coefficients.

Description

BACKGROUND[0001]Embodiments of the invention relate generally to a field of processing data signals, and more specifically to reducing the number of data samples required for image / signal reconstruction.[0002]With advances in various areas of technology, such as, but not limited to, imaging, networking, healthcare, audio, video entertainment and commmunication, huge volumes of data are frequently generated. More particularly, in imaging and healthcare applications, it may be desirable to acquire several images of one or more patients and subsequently store these images, thereby entailing use of considerable storage space and processing time. Similarly, communication applications call for reductions in bandwidth and an increase in data transmission speed to communicate data. Traditionally, data compression techniques have been employed to aid in the efficient storage of such data. Data compression may entail encoding information using fewer bits (or other information-bearing units) t...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(United States)
IPC IPC(8): G06K9/00
CPCH04N19/635
Inventor KHARE, KEDARHARDY, CHRISTOPHER JUDSONMARINELLI, LUCATAO, XIAODONG
Owner GENERAL ELECTRIC CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products