Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Four-rotor aircraft finite time control method based on inverse-proportion function enhanced constant-speed reaching law and rapid terminal sliding mode surface

A technology of quadrotor aircraft and control method, which is applied in the direction of adaptive control, general control system, control/regulation system, etc., and can solve the problems that the sliding mode surface cannot realize finite time control and accelerate the approaching speed of the reaching law.

Active Publication Date: 2018-11-06
ZHEJIANG UNIV OF TECH
View PDF10 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0004] In order to overcome the problem that the traditional sliding mode surface cannot realize finite time control and further accelerate the approaching speed of the reaching law and reduce chattering, the present invention adopts fast terminal sliding mode control and a...

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Four-rotor aircraft finite time control method based on inverse-proportion function enhanced constant-speed reaching law and rapid terminal sliding mode surface
  • Four-rotor aircraft finite time control method based on inverse-proportion function enhanced constant-speed reaching law and rapid terminal sliding mode surface
  • Four-rotor aircraft finite time control method based on inverse-proportion function enhanced constant-speed reaching law and rapid terminal sliding mode surface

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0073] The present invention will be further described below in conjunction with the accompanying drawings.

[0074] refer to Figure 1-Figure 7 , a finite-time control method for a quadrotor aircraft based on an inversely proportional function-enhanced constant-velocity reaching law and a fast terminal sliding surface, including the following steps:

[0075] Step 1, determine the transfer matrix from the body coordinate system based on the quadrotor aircraft to the inertial coordinate system based on the earth;

[0076]

[0077] Among them, ψ, θ, and φ are the yaw angle, pitch angle, and roll angle of the aircraft, respectively, indicating the rotation angle of the aircraft around each axis of the inertial coordinate system in turn, and T ψ represents the transition matrix of ψ, T θ Denotes the transition matrix of θ, T φ Represents the transition matrix of φ;

[0078] Step 2, analyze the quadrotor aircraft dynamics model according to the Newton Euler formula, the proc...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

Provided is a four-rotor aircraft finite time control method based on an inverse-proportion function enhanced constant-speed reaching law and a rapid terminal sliding mode surface. The method includesfollowing steps: step 1, determining a transfer matrix from a body coordinate system based on a four-rotor aircraft to an inertial coordinate system based on earth; step 2, analyzing a kinetic modelof the four-rotor aircraft according to a Newton Euler's formula; and step 3, calculating a tracking error, and designing a controller according to the rapid terminal sliding mode surface and a first-order derivative thereof. For a four-rotor aircraft system, with the combination of the enhanced constant-speed reaching law sliding mode control based on an inverse-proportion function and the rapidterminal sliding mode surface control, the reaching speed can be increased when being far from the sliding mode surface, the buffeting can be reduced, the rapidity and the robustness of the system areimproved, rapid and stable control can be realized, finite time control of the tracking error can be realized, and the problem that in the conventional sliding mode surface, only when the time reaches infinity, the tracking error can reach 0 is solved.

Description

technical field [0001] The invention relates to a finite-time control method of a four-rotor aircraft based on an inverse proportional function enhanced constant-velocity approach law and a fast terminal sliding mode surface. Background technique [0002] Due to the characteristics of simple structure, strong maneuverability and unique flight mode, quadrotor aircraft has attracted extensive attention from scholars and scientific research institutions at home and abroad, and has quickly become one of the hot spots in international research. Compared with fixed-wing aircraft, rotorcraft can lift vertically, has low environmental requirements, does not need a runway, reduces costs, and has huge commercial value. The development of aircraft has made many dangerous high-altitude operations easy and safe, deterring other countries in military aspects, and greatly increasing work efficiency in civilian aspects. Quadrotors are highly flexible, can achieve rapid transitions of motio...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): G05B13/04
CPCG05B13/042
Inventor 陈强陈凯杰胡轶吴春
Owner ZHEJIANG UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products