Eureka AIR delivers breakthrough ideas for toughest innovation challenges, trusted by R&D personnel around the world.

Four-rotor aircraft self-adaptive control method based on hyperbolic sine exponential enhancement type power reaching law and fast terminal sliding mode surface

A quadrotor aircraft, adaptive control technology, applied in the direction of adaptive control, general control system, control/regulation system, etc., can solve the problem of inability to achieve limited time control, speed up the approach speed of the approach law, and reduce the The effect of chattering, faster approach speed, and improved stability

Active Publication Date: 2018-09-21
ZHEJIANG UNIV OF TECH
View PDF7 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0004] In order to overcome the problem that the traditional sliding mode surface cannot realize finite time control and further accelerate the approaching speed of the reaching law and reduce chattering, the present invention adopts fast terminal sliding mode control and hyperbolic sine-based enhanced power reaching law , through the idea of ​​switching control, the singularity problem is avoided, the approach speed of the system to the sliding surface is accelerated, the chattering is reduced, and the finite time control is realized

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Four-rotor aircraft self-adaptive control method based on hyperbolic sine exponential enhancement type power reaching law and fast terminal sliding mode surface
  • Four-rotor aircraft self-adaptive control method based on hyperbolic sine exponential enhancement type power reaching law and fast terminal sliding mode surface
  • Four-rotor aircraft self-adaptive control method based on hyperbolic sine exponential enhancement type power reaching law and fast terminal sliding mode surface

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0075] The present invention will be further described below in conjunction with the accompanying drawings.

[0076] refer to Figure 1-Figure 11 , an adaptive control method for quadrotor aircraft based on hyperbolic sine-enhanced power reaching law and fast terminal sliding surface, including the following steps:

[0077] Step 1, determine the transfer matrix from the body coordinate system based on the quadrotor aircraft to the inertial coordinate system based on the earth;

[0078]

[0079] Among them, ψ, θ, and φ are the yaw angle, pitch angle, and roll angle of the aircraft, respectively, indicating the rotation angle of the aircraft around each axis of the inertial coordinate system in turn, and T ψ represents the transition matrix of ψ, T θ Denotes the transition matrix of θ, T φ Represents the transition matrix of φ;

[0080] Step 2, analyze the quadrotor aircraft dynamics model according to the Newton Euler formula, the process is as follows:

[0081] 2.1, du...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention relates to a four-rotor aircraft self-adaptive control method based on a hyperbolic sine exponential enhancement type power reaching law and a fast terminal sliding mode surface. The method comprises the following steps that 1, a transfer matrix from a machine body coordinate system based on a four-rotor aircraft to an inertial coordinate system based on the earth is determined; 2, adynamics model of the four-rotor aircraft is analyzed according to a Newton euler formula; 3, tracking errors are calculated, and a controller is designed according to the fast terminal sliding modesurface and a first-order derivative thereof. According to the method, the hyperbolic sine exponential enhancement type power reaching law, sliding mode control and fast terminal sliding mode controlare combined so that the reaching speed can be increased when the four-rotor aircraft is away from the sliding mode surface, vibration can be reduced, the rapidity and robustness of a system are improved, and rapid and stable control can be achieved; meanwhile, limited time control over the tracking errors can be achieved, and the problem that only when the time approaches the infinity, the tracking errors approach the infinity in a traditional sliding mode surface is solved. Meanwhile, the interference boundary is estimated in a self-adaptive mode, so that the stability of the system is improved.

Description

technical field [0001] The invention relates to an adaptive control method for a quadrotor aircraft based on a hyperbolic sine enhanced power reaching law and a fast terminal sliding mode surface. Background technique [0002] Due to the characteristics of simple structure, strong maneuverability and unique flight mode, quadrotor aircraft has attracted extensive attention from scholars and scientific research institutions at home and abroad, and has quickly become one of the hot spots in international research. Compared with fixed-wing aircraft, rotorcraft can lift vertically, has low environmental requirements, does not need a runway, reduces costs, and has huge commercial value. The development of aircraft has made many dangerous high-altitude operations easy and safe, deterring other countries in the military, and greatly increasing work efficiency in civilian use. Quadrotors are highly flexible, can achieve rapid transitions of motion and hovering at any time, and can h...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): G05B13/04
CPCG05B13/042
Inventor 陈强陈凯杰胡轶吴春
Owner ZHEJIANG UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products