Treatment Of HIV-1 Infection And AIDS

a technology for treating hiv-1 infection and aids, which is applied in the direction of drug compositions, enzyme inhibitors, peptide/protein ingredients, etc., can solve the problems of reducing the number of t-cells, affecting the survival rate of patients, so as to reduce inflammation and slow the progression of diseas

Inactive Publication Date: 2015-12-03
THE J DAVID GLADSTONE INST A TESTAMENTARY TRUST ESTABLISHED UNDER THE WILL OF J DAVID GLADS
View PDF0 Cites 7 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

This patent describes how certain substances can treat or prevent HIV-1 infections by blocking an enzyme called caspase-1. These substances may also help improve symptoms in people already living with HIV-1, protect cells from damage caused by the virus, reduce inflammation, and even stop cell death without causing harmful side effects.

Problems solved by technology

The technical problem addressed in this patent text is finding new ways to treat HIV-1 infections and AIDS without causing harmful side effects or developing resistance among the population. Current anti-viral medications target either the early stages of the viral lifecycle or the late stages of the process through inhibiting certain protein functions. The inventors describe innovative methods utilizing caspase-1 and caspase-3 inhibitors to manage the virus.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Treatment Of HIV-1 Infection And AIDS
  • Treatment Of HIV-1 Infection And AIDS
  • Treatment Of HIV-1 Infection And AIDS

Examples

Experimental program
Comparison scheme
Effect test

example 1

General

[0349]i. Culture and Infection of HLACs

[0350]Human tonsil or splenic tissues from routine tonsillectomies were obtained from the National Disease Research Interchange and the Cooperative Human Tissue Network and processed as previously described (Jekle et al., 2003, J Virol 77:5846-5854). In brief, tonsils or spleen were minced, passed through a 40-μm cell strainer, and cultured in 96-well U-bottomed polystyrene plates (2×106 cells / well) in medium (200 μl / well) consisting of RPMI 1640 supplemented with 15% heat-inactivated fetal bovine serum, 100 μg / ml gentamicin, 200 μg / ml ampicillin, 1 mM sodium pyruvate, 1% nonessential amino acids (Mediatech), 2 mM L-glutamine, and 1% fungizone (Invitrogen). All HIV-1 infections were carried out with 20-50 ng of HIV-1 p24gag. Cells were incubated with the virus for 12-16 h, washed extensively, and supplemented with fresh medium. After day 5, infections were monitored by measuring p24gag levels in the culture medium using a FLAQ assay (Hay...

example 2

Selective Depletion of CD4 T-Cells by X4-Tropic HIV-1

[0386]To explore depletion of CD4 T-cells by HIV-1, HLACs made from freshly dissected human tonsillar tissues were infected with a GFP reporter virus (NLENG1), prepared from the X4-tropic NL4-3 strain of HIV-1. This reporter produces fully replication-competent viruses. An IRES inserted upstream of the Nef gene preserves Nef expression and supports LTR-driven GFP expression (Levy et al., 2004, Proc Natl Acad Sci USA 101:4204-4209), allowing simultaneous quantification of the dynamics of HIV-1 infection and T-cell depletion. NL4-3 was selected because tonsillar tissue contains a high percentage of CD4 T-cells expressing CXCR4 (90-100%). Productively infected GFP-positive cells appeared in small numbers 3 days after infection, peaked on days 6-9, and decreased until day 12, when few CD4 T-cells remained in the culture (FIG. 1) Fluorescence-linked antigen quantification (FLAQ) assay of HIV-1 p24 (Hayden et al., 2003, AIDS 17:629-631)...

example 3

Extensive Depletion of Non-Productively Infected CD4 T-Cells in HLACs

[0387]To determine if indirect killing (formerly indicated as “bystander”) of CD4 T-cells accounted for most of the observed cellular depletion, an experimental strategy (Jekle et al., 2003, J Virol 77:5846-5854) was employed that unambiguously distinguishes between the death of productively and non-productively infected cells (FIG. 2A). After 6 days of co-culture, survival analysis of CFSE-labeled cells by flow cytometry (FIG. 2B) showed extensive depletion of CD4 T-cells in cultures mixed with HIV-infected cells but not in those mixed with uninfected cells (FIG. 2C). The relative proportion of CD8 T-cells was not altered. CD3+ / CD8T-cells were similarly depleted, indicating that the loss was not an artifact of downregulated surface expression of CD4 following direct infection. Loss of CFSE-labeled CD4 T-cells was prevented by AMD3100, which blocks the engagement of gp120 with CXCR4, but not by the reverse transcri...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Massaaaaaaaaaa
Electric chargeaaaaaaaaaa
Dimensionless propertyaaaaaaaaaa
Login to view more

Abstract

Provided herein are compositions and methods for the treatment of a patient having an HIV-1 infection and/or AIDS. More specifically this invention provides treatment of an HIV-1 infection and/or AIDS using small molecule compounds, such as inhibitors for the activation and/or activity of caspase-1. Inhibitors for the activation and/or activity of caspase-1 also prevent the cell death of CD4 T-cells in a population of CD4 T-cells comprising HIV-1 infected CD4 T-cells and uninfected CD4 T-cells. In addition, caspase-1 inhibitors inhibit inflammation, and pyroptosis.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner THE J DAVID GLADSTONE INST A TESTAMENTARY TRUST ESTABLISHED UNDER THE WILL OF J DAVID GLADS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products