Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method of patterning cholesteric film and optical element having the cholesteric film patterned by the method

a technology of cholesteric film and optical element, which is applied in the direction of polarising elements, instruments, chemistry apparatus and processes, etc., can solve the problems of easy falling off, and achieve the effect of efficient and precise patterning of cholesteric film

Inactive Publication Date: 2006-08-03
DAI NIPPON PRINTING CO LTD
View PDF6 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0009] The present invention has been accomplished on the basis of the above-described finding. An object of the present invention is therefore to provide a method of efficiently and precisely patterning a cholesteric film. Another object of the present invention is to provide an optical element including a cholesteric film patterned by the method.
[0014] According to the present invention, a part of the cholesteric film is removed by applying, to the same, laser light that has a wavelength falling outside the selective reflection wave range of the cholesteric film, or contains, as its main component, a component circularly polarized in the direction opposite to that of optical rotation of a component selectively reflected by the cholesteric film. Therefore, it is possible to efficiently carry out patterning of the cholesteric film without suffering selective reflection of light.

Problems solved by technology

However, if a cholesteric film is patterned by the use of cutting tools such as cutters, the patterned cholesteric film tend to have burrs or the like at the breaks in the films, and, in addition, become easy to come off.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method of patterning cholesteric film and optical element having the cholesteric film patterned by the method
  • Method of patterning cholesteric film and optical element having the cholesteric film patterned by the method

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

(Object to be Patterned)

[0020] First of all, the object to which the method in a first embodiment of the present invention is applied will be explained by referring to FIG. 1. In this first embodiment of the invention, the object to be patterned is explained by taking, as an example, an original plate for optical elements that is used to produce a polarizing plate or the like.

[0021] As shown in FIG. 1, an original plate for optical elements to which the method in the first embodiment of the invention is applied includes: a glass substrate 11; an alignment film 12 laminated to the glass substrate 11; and a cholesteric film 13 formed on the alignment film 12, oriented by the alignment-regulating action of the surface of the alignment film 12. The glass substrate 11 and the alignment film 12 constitute a base.

[0022] The cholesteric film 13 has the property of selecting polarized light (the property of splitting polarized light), which a component of light circularly polarized in on...

second embodiment

[0041] Next, the second embodiment of the present invention will be described. The second embodiment of the invention is the same as the foregoing first embodiment of the invention, except that laser light containing, as its main component, a component circularly polarized in the direction opposite to that of optical rotation of a component selectively reflected by the cholesteric film is used. Specifically, in the above explanation for the first embodiment, the description for the constitution of the object to be patterned (the item “Object to be Patterned”), and a part of the description for the method of patterning a cholesteric film (the item “Preparatory Step”) are applicable to the second embodiment as they are. Therefore, only the patterning step in the second embodiment of the method of patterning a cholesteric film will be hereinafter explained in detail.

(Patterning Step)

[0042] A cholesteric film 13 is formed on an alignment film 12 provided on a glass substrate 11 as sh...

example 1-1

[0047] 89 parts of a monomer containing, in its molecule, polymerizable acrylates at the both ends and spacers between mesogen existing at the center and the acrylates, having a nematic-isotropic transition temperature of 110° C., and 11 parts of a chiral agent having, in its molecule, polymerizable acrylates at the both ends were dissolved in toluene. To this toluene solution was added a photopolymerization initiator in an amount of 5% by weight of the above monomer.

[0048] On the other hand, a transparent glass substrate was spin-coated with polyimide dissolved in a solvent. After drying, the polyimide was allowed to form a film at 200° C. (film thickness 0.1 m). This film was rubbed in a definite direction to obtain an alignment film.

[0049] The glass substrate provided with the alignment film was set in a spin-coater, and the alignment film was spin-coated with the above-prepared toluene solution.

[0050] The toluene contained in the toluene solution was then evaporated at 80° C....

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
temperatureaaaaaaaaaa
temperatureaaaaaaaaaa
isotropic transition temperatureaaaaaaaaaa
Login to View More

Abstract

The present invention provides a method of efficiently and precisely patterning cholesteric films. A cholesteric film 13 is firstly formed on an alignment film 12 provided on a glass substrate 11. The cholesteric film 13 is then patterned by partially volatilizing and removing a part of the cholesteric film 13 by the application of laser light 20 having a wavelength not falling in the selective reflection wave range of the cholesteric film 13. It is preferred that the wavelength of the laser light 20 be shorter than that of visible light. Alternatively, there may be used laser light 20 containing, as its main component, a component circularly polarized in the direction opposite to that of optical rotation of a component selectively reflected by the cholesteric film.

Description

[0001] This is a Division of application Ser. No. 10 / 107,316 filed Mar. 28, 2002. The entire disclosure of the prior application is hereby incorporated by reference in its entirety.BACKGROUND OF THE INVENTION [0002] 1. Field of the Invention [0003] The present invention relates to a process for producing an optical element for use in displays such as a liquid crystal display. More particularly, the present invention relates to a method of patterning a film having a cholesteric order (i.e., a cholesteric film), and to an optical element including a cholesteric film patterned by the method. [0004] 2. Related Art [0005] There have conventionally been proposed, as an optical element including a cholesteric film, a polarizing plate composed of laminates of a plurality of cholesteric liquid crystal layers having different chiral pitches (Japanese Laid-Open Patent Publications No. 271731 / 1996 and No. 264907 / 1999). [0006] Such an optical element including a cholesteric film is often made in...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): C09K19/02G02B5/30
CPCG02B5/3016
Inventor KASHIMA, KEIJIISHIZAKI, KOJI
Owner DAI NIPPON PRINTING CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products