Input with haptic feedback

a technology of input and haptic feedback, applied in the field of user inputs, can solve the problem that mechanical inputs cannot give a user tactile feedback, and achieve the effect of rich interaction experience and better user experien

Active Publication Date: 2016-12-29
APPLE INC
View PDF4 Cites 8 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0005]Some electronic devices may include mechanical inputs, such as buttons and / or switches. These mechanical inputs can control power (i.e., on / off) and volume for the electronic devices, among other functions. However, sometimes these mechanical inputs can fail to give a user tactile feedback, such as the “click-click-click” feeling of winding a mechanical alarm clock with a knob. It can be beneficial to provide haptic or tactile feedback to a user who is interacting with a mechanical input of an electronic device to give the user a richer interaction experience with the device. Devices that accept non-mechanical inputs, such as touch input, can also provide a better user experience with haptic or tactile feedback provided to a user via their non-mechanical input mechanisms (e.g., via their touch screens). In some examples, such haptic feedback can constitute giving the user a sensation that the user's finger is moving over a ridge, bump or valley feature on an otherwise smooth surface. This type of sensation can simulate the feeling of the user rotating a mechanical knob against the teeth of an internal gear (e.g., the feeling of a detent when turning a rotary input, such as the “click-click-click” feeling of winding a mechanical watch). Haptic feedback as described above can give the user feedback about the effect of the user's input on the electronic device, such as changing the zoom-scale of content displayed on the device in response to the user's rotary input. In some examples, the above haptic feedback can be provided to the user via displacement of a mechanical input that is orthogonal to the direction of the movement of the mechanical input provided by the user (e.g., displacement of a rotary input that is orthogonal to the rotary input's rotational movement). In some examples, the above haptic feedback can be provided to the user via displacement, of a touch-sensitive surface, that is orthogonal to the direction of the rotational movement of the user's finger on the touch-sensitive surface (e.g., when the user is rotating or otherwise manipulating a virtual knob or scroll wheel with circular gestures on a touch-sensitive surface). Various examples of the above are provided in this disclosure.

Problems solved by technology

However, sometimes these mechanical inputs can fail to give a user tactile feedback, such as the “click-click-click” feeling of winding a mechanical alarm clock with a knob.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Input with haptic feedback
  • Input with haptic feedback
  • Input with haptic feedback

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0016]In the following description of examples, reference is made to the accompanying drawings which form a part hereof, and in which it is shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the disclosed examples.

[0017]Some electronic devices may include mechanical inputs, such as buttons and / or switches. These mechanical inputs can control power (i.e., on / off) and volume for the electronic devices, among other functions. However, sometimes these mechanical inputs can fail to give a user tactile feedback, such as the “click-click-click” feeling of winding a mechanical alarm clock with a knob. It can be beneficial to provide haptic or tactile feedback to a user who is interacting with a mechanical input of an electronic device to give the user a richer interaction experience with the device. Devices that accept non-mechanical inputs, such a...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

An electronic device is disclosed. The electronic device includes a mechanical input configured to move in a first direction in response to an input at the mechanical input. A mechanical input sensor is coupled to the mechanical input and configured to sense the input at the mechanical input based on the movement of the mechanical input in the first direction. A mechanical input actuator is coupled to the mechanical input and configured to displace the mechanical input in a second direction, different from the first direction. In some examples, the second direction is orthogonal to the first direction. In some examples, the mechanical input comprises a rotary input configured to rotate in the first direction in response to the input. In some examples, the mechanical input actuator is configured to displace the mechanical input in the second direction while the mechanical input is moving in the first direction.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS[0001]This application is a continuation of U.S. patent application Ser. No. 14 / 754,416 filed Jun. 29, 2015, the entire disclosure of which is incorporated herein by reference for all purposes.FIELD OF THE DISCLOSURE[0002]This relates generally to user inputs, such as mechanical inputs, and more particularly, to providing haptic feedback on such inputs.BACKGROUND OF THE DISCLOSURE[0003]Many types of input devices are presently available for performing operations in a computing system, such as buttons or keys, mice, trackballs, joysticks, touch sensor panels, touch screens and the like. Touch screens, in particular, are becoming increasingly popular because of their ease and versatility of operation as well as their declining price. Touch screens can include a touch sensor panel, which can be a clear panel with a touch-sensitive surface, and a display device such as a liquid crystal display (LCD) that can be positioned partially or fully behind ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): G06F3/01G06F3/041
CPCG06F3/041G06F3/016G06F3/0362H02N2/026
Inventor MOUSSETTE, CAMILLEMORRELL, JOHNKERR, DUNCAN ROBERTJACKSON, BENJAMIN G.TAYLOR, STEVEN J.
Owner APPLE INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products