Method for modeling color halftones

a color halftone and model technology, applied in the printing industry, can solve the problems of inflexibility of methods, large amount of memory required to store this type of models, and difficulty in accurate color prediction, so as to reduce the order of models and computations. the effect of complexity

Inactive Publication Date: 2007-02-06
UNIVERSITY OF DELAWARE
View PDF8 Cites 17 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Inkjet printing involves a variety of physical phenomena, such as light scattering and ink spreading, which make accurate color prediction a difficult task.
However, the amount of memory that is required to store this type of model is a major drawback.
In addition, since the model characterizes a particular printer and media, this method lacks flexibility because a new set of colorimetric data is needed for each printer.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method for modeling color halftones
  • Method for modeling color halftones
  • Method for modeling color halftones

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0027]The method of the present invention is based on an eigenanalysis of color sample reflectance data and a simplifying probabilistic analysis. Unlike other background art methods involving probability theory, the method of the present invention considers the scattering of light on the paper substrate as a breakage process governed by a log-normal distribution. In this method the macro reflectance of a print color is a multiplicative composition of the primary reflectances in contrast to being to an additive mixture, as in the above-discussed background art. The method can be applied to clustered ordered dithering and to stochastic dithering, where for each case the eigenanalysis is performed by employing single ramp-ups of the primary colors (e.g., cyan, magenta and yellow). The method reduces both the number of parameters and the number of measurements required for printer characterization. For the case of two color mixtures, a maximum average color difference CIELab ΔE equal to...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A method for modeling color halftones that reduces both the number of parameters and the number of measurements needed to characterize an inkjet color printer. The method is based on the eigenanalysis of sample reflectance data and a probabilistic analysis that considers light scattering on the paper substrate as a breakage process governed by a log-normal distribution. The method estimates the reflectance of a print color by characterizing colors as a multiplicative composition of primary color reflectances rather than as an additive mixture of primary and secondary color reflectances as suggested by the theory of Neugebaeur.

Description

BACKGROUND OF THE INVENTION[0001]In the printing industry, color halftoning and color management are subjects that need to be continuously improved in order to get newer and more accurate ways to predict and reproduce color in a variety of media. In particular, color inkjet printers are devices where research and development efforts have been concentrated in the past several years. Inkjet printing involves a variety of physical phenomena, such as light scattering and ink spreading, which make accurate color prediction a difficult task.[0002]The simplest approach to characterizing a color printer is to empirically take several calorimetric measurements over a wide range of color patches in a grid-like fashion. Interpolation of such data can be done to estimate the rest of the model, where the amount of error depends on the number of grid points taken into account. For example, in a Cyan, Magenta and Yellow (CMY) printer, small errors could be attained with around 8000 measurements. H...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Patents(United States)
IPC IPC(8): H04N1/52H04N1/60
CPCH04N1/6016
Inventor NINO, CESAR L.ARCE, GONZALO R.
Owner UNIVERSITY OF DELAWARE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products