Process for producing confectionery highly stable to heat

a heat stable, confectionery technology, applied in confectionery, cocoa, edible oils/fats, etc., can solve the problems of loss of commercial value, deterioration of meltability in the mouth of the resultant product, and problems with known methods, etc., to achieve high heat stable

Inactive Publication Date: 2005-07-21
MINAMIGAWA YORIKO +1
View PDF9 Cites 10 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0004] An object of the present invention is to provide a process for producing confectionery highly stable to heat which can be eaten

Problems solved by technology

Until now, heat stability of goods produced by combining edible materials such as baking confectionery, candies, nuts, snack confectionery and the like with chocolate is limited by the melting point of the chocolate, and there are problems due to melting of a fat ingredient such as deform

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0021] According to a conventional method, a refined chocolate paste was prepared by using cocoa mass (5 parts), cocoa powder (10 parts), whole milk powder (15 parts), sugar (35 parts), palm olein having the melting point of 35° C. (35 parts) and lecithin (0.4 part) and its temperature was adjusted to 40° C. A portion (2 g) of the paste was coated on the surface of a commercially available biscuit. Then, water was sprayed on the surface before solidification of the paste so that fine water droplets cover the surface, followed by baking with an oven at 150° C. for 4 minutes. After baking and cooling, the biscuit coated with the refined chocolate paste was obtained. When the taste of biscuit was evaluated, meltability in the mouth and mouthfeel were good. For evaluation of heat stability, the coated biscuit was allowed to stand in an incubator at 37° C. for 6 hours. However, no softening and melting of the surface of chocolate were observed and chocolate did not stick to hands and fin...

example 2

[0022] According to a conventional method, a refined white chocolate paste was prepared by using whole milk powder (20 parts), sugar (45 parts), cocoa butter (35 parts) and lecithin (0.4 part) and its temperature was adjusted to 40° C. A portion (3 g) of the paste was deposited on the surface of a commercially available wafer dough, followed by baking according to the same manner as described above. After baking and cooling, the wafer on which the refined white chocolate paste was deposited was obtained. When the taste was evaluated according to the same manner as in the above Example 1, meltability in the mouth and mouthfeel were good. In the same heat stability evaluation as in the above Example 1, no softening and melting of the surface of white chocolate were observed and white chocolate did not stick to hands and fingers.

example 3

[0023] According to a conventional method, a cookie dough was prepared by using shortening (Panpas LB manufactured by Fuji Oil Company, Ltd.) (40 parts), sugar (30 parts), whole egg (10 parts), water (10 part), baking soda (0.3 part) and soft wheat flour (100 parts). The cookie dough was rolled into a sheet of 4 mm thick and a portion (3 g) of the refined chocolate paste of Example 1 which was adjusted to 40° C. was coated on the surface of the sheet molded into a 40 mm square. Then, a sucrose solution of 20 Brix was applied thereto and the resultant material was baked in an oven at 160° C. for 8 minutes. After baking and cooling, the cookie coated with the refined chocolate paste was prepared. When the taste was evaluated according to the same manner as in the above Example 1, meltability in the mouth and mouthfeel were good. In the same heat stability evaluation as in the above Example 1, no softening and melting of the surface of chocolate were observed and chocolate did not stic...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The present invention provides a process for producing confectionery highly stable to heat which can be eaten without being deformed, becoming sticky at the surface or sticking to each other while maintaining the original mouthfeel of chocolate. As a result of the present inventors' intensive studied, it has been found out that a process for producing confectionery highly stable to heat can be provided by making the surface of a refined chocolate paste absorb moisture or bringing chocolate into contact with a moisture-containing food material, and then baking.

Description

TECHNICAL FIELD [0001] The present invention relates to a process for producing confectionery whose heat stability is significantly improved not by adjusting the melting point of a fat ingredient, but by making the surface of a refined chocolate paste absorb moisture, or bringing chocolate into contact with a moisture-containing food material, and then baking. BACKGROUND ART [0002] Until now, heat stability of goods produced by combining edible materials such as baking confectionery, candies, nuts, snack confectionery and the like with chocolate is limited by the melting point of the chocolate, and there are problems due to melting of a fat ingredient such as deformation, stickiness at the surface, sticking to each other, and the like, which results in loss of commercial value. Then, various methods for improving heat stability of chocolate have been studied. For example, a fat ingredient having a higher melting point is used. JP 55-9174 B discloses a process for producing confectio...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): A23G1/00A23G1/04A23G1/30A23G1/32A23G1/44A23G1/48A23G1/50
CPCA23G1/04A23G1/30A23G1/50A23G1/44A23G1/48A23G1/325
Inventor MINAMIGAWA, YORIKOMATSUNAMI, HIDENOBU
Owner MINAMIGAWA YORIKO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products