Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Pump diaphram rupture detection

a diaphragm and pump technology, applied in the direction of engine diaphragms, positive displacement liquid engines, liquid fuel engines, etc., can solve the problems of wear and failure of each layer independently

Inactive Publication Date: 2005-10-13
WANNER EGINEERING INC
View PDF13 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0058] Certain advantages of the present invention can be described using a discussion of the various modes of diaphragm failure. The most common failure mode occurs when a failure in the hydraulic oil volume control allows too much oil behind the diaphragm (at the first side 160 of first layer 140). In this situation, the diaphragm balloons forward until it contacts openings in the first chamber 124 that cut the diaphragm. In the case where the layers of the diaphragm are independently movable from each other, no oil can leak through the diaphragm when only the outer (second layer 142) layer is cut because the first and second layers 140 and 144 remain intact and the failure in the second layer does not propagate to the first and third layers. Because the conductive trace 150 is able to monitor mere changes in resistance that indicate both actual failure and possibly initiation of a failure condition as opposed to rather than require a break in the conductive trace or exposure of the conductive trace to a conductive fluid determine failure of one of the diaphragm layers as known in the art, there may be a better chance that the pump can be turned off before all of the layers fail.

Problems solved by technology

Although the layers may be bonded to each other, in a preferred embodiment the layers are independently movable relative to each other so that wear and fail of each layer occurs independently.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Pump diaphram rupture detection
  • Pump diaphram rupture detection
  • Pump diaphram rupture detection

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0041] The present invention generally relates to a diaphragm for a hydraulically driven pump that is an improvement to the conventional diaphragms described above. Like parts are designated by like numerals. Improved parts are distinguished and described. The invention generally relates to hydraulically driven pumps, and more specifically relates to diaphragms for hydraulically driven pumps and the detection of failure in such diaphragms. The diaphragm includes at least three elastomeric layers made of high strain resistant materials. The layer positioned between the other two layers includes a conductive trace embedded therein. Changes in the conductive trace resistance is monitored while the diaphragm is in use. When the resistance values reach a certain predetermined level that indicates failure in one or more of the diaphragm layers, or the possibility of a failure occurring, a failure signal is generated. A rupture of the middle layer will also be detected since a break in the...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A hydraulically driven pump includes a first chamber exposed to a process fluid, a second chamber configured to retain a hydraulic fluid, and a multi-layer diaphragm positioned between the first and second chambers. The diaphragm includes a first layer in contact with the process fluid being pumped, a second layer in contact with the hydraulic fluid, and a third layer that includes an elastomeric base material and an elastomeric conductive trace embedded in the elastomeric base material. The third layer is positioned between the first and second layers and being movable relative to the first and second layers. Changes in an electrical resistance of the conductive trace indicate a failure condition in one of the first, second and third layers.

Description

[0001] This application is a continuation of U.S. application Ser. No. 10 / 726,984, filed Dec. 2, 2003.BACKGROUND OF THE INVENTION [0002] 1. Technical Field [0003] The invention generally relates to hydraulically driven pumps, and more specifically relates to diaphragms for hydraulically driven pumps. [0004] 2. Related Art [0005] The known rotary-operated, oil-backed / driven diaphragm pump is a high-pressure pump inherently capable of pumping many difficult fluids because in the process fluid, it has no sliding pistons or seals to abrade. The diaphragm isolates the pump completely from the surrounding environment (the process fluid), thereby protecting the pump from contamination. [0006] In general, a diaphragm pump 20 is shown in FIGS. 9 and 10. Pump 20 has a drive shaft 22 rigidly held in the pump housing 24 by a large tapered roller bearing 26 at the rear of the shaft and a small bearing (not shown) at the front of the shaft. Sandwiched between another pair of large bearings (not s...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): F04B43/00F04B43/067F16J3/02
CPCF04B43/0054F16J3/02F04B43/067F04B43/009
Inventor HEMBREE, RICHARD D.
Owner WANNER EGINEERING INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products