Eureka AIR delivers breakthrough ideas for toughest innovation challenges, trusted by R&D personnel around the world.

Single tunnel double bundle posterior cruciate ligament reconstruction

a single-tunnel, posterior cruciate ligament technology, applied in the field of single-tunnel double-bundle posterior cruciate ligament reconstruction, can solve the problems of extremely high surgeon skill level of dbdtpclr, and achieve the effect of improving surgeon skill and patient comfor

Inactive Publication Date: 2010-02-25
DOUGHERTY CHRISTOPHER P
View PDF7 Cites 58 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0009]STDBPCLR utilizes a standard graft harvest and can be performed using either allograft or autograft tissues such as bone patellar tendon bone, wherein the graft includes a portion of the patella tendon having a bone plug on each end, or semitendinosus gracilis (hamstring) tendons. Standard tibial and femoral tunnels are prepared using either a trans-tibial or a trans-portal technique. The femoral graft fixation is important because the bundles for the PCL must be oriented in a proper direction to provide separate kinematic bundles created a through a single tunnel. The graft position on the femoral side is held in place through screws and / or other fixation devices used where the graft is prepared and separated into two separate bundles through implant design or through surgeon preparation. When using hamstring grafts, the grafts are positioned on the femoral side to provide for a posterior cruciate bundle that can be independently tensioned after femoral tunnel fixation. When using bone patellar tendon bone grafts, the femoral bone plug is left as one piece when inserted and the graft is prepared to provide for the separate bundles in the tibia.
[0010]During graft introduction into the knee two kinematically separate bundles are created. As the graft is pulled into the knee, the surgeon, who has marked the appropriate bundle of tissue which is to be the posterior cruciate lateral bundle, rotates this bundle to the posterior cruciate lateral position in the tibia while rotating the other bundle, the posterior cruciate medial bundle, to the posterior cruciate medial portion of the tibial tunnel, thereby creating the soft tissue required for both the posterior cruciate lateral and posterior cruciate medial bundles. With the separate bundle created in the knee and appropriately oriented, the bundles are tensioned independently. The posterior cruciate medial bundle is tensioned with the knee in 90 degrees of flexion while the posterior cruciate lateral bundle is tensioned with the knee in full extension. An external tensioning device is capable of cycling the separate bundles under tension or this can be accomplished with two separate screws inserted as posts into the tibia. Once the graft is tensioned, tibial fixation is either completed with the screws alone or, using a removable tensioning device, the bundles are secured in the tibial tunnel with a screw type fixation device and the external tensioner is removed. By anatomically creating two separate bundles and kinematically tensioning those separate bundles and fixating them, the surgeon creates a single tunnel double bundle posterior cruciate ligament repair (STDBPCLR).

Problems solved by technology

DBDTPCLR is technically demanding procedure requiring an extremely high level of surgeon skill.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Single tunnel double bundle posterior cruciate ligament reconstruction
  • Single tunnel double bundle posterior cruciate ligament reconstruction
  • Single tunnel double bundle posterior cruciate ligament reconstruction

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0019]The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.

[0020]FIGS. 1-7 illustrate a method of reconstructing the posterior cruciate ligament (PCL) of the knee 11 using a single tunnel double bundle technique. Prior to the reconstruction a standard graft harvest is performed using either allograft or autograft tissues such as bone patellar tendon bone or semitendinosus gracilis (hamstring) tendons. Standard tibial and femoral tunnels then are prepared using either a trans-tibial or a trans-portal technique.

[0021]As shown in FIG. 1, the graft 10 is fixed in the femur 12 using standard fixation techniques. For example, in the exemplary embodiment, when using hamstring grafts, the graft 10 is positioned on the femoral side 14 to provide for a posterior cruciate bundle that can be independently tensioned after femoral tunnel fixation. Alternatively, when using bone patellar te...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The present invention provides a method of performing posterior cruciate ligament replacement. Specifically, a graft tissue is harvested from a patient and single tunnels are prepared in each of the tibia and the femur of the patient. The graft is secured in the femoral tunnel and separated into a posterior cruciate medial bundle and a posterior lateral bundle. The bundles are inserted through the tibial tunnel. During insertion the posterior lateral bundle is positioned in a posterior lateral position in the tibial tunnel while the posterior cruciate medial bundle is positioned in a posterior cruciate medial position in the tibial tunnel. The posterior cruciate medial bundle is then tensioned while the patient's knee is in approximately 90 degrees of flexion, and the posterior lateral bundle is tensioned while the patient's knee is approximately in full extension. Each of the bundles is then secured in the tibial tunnel.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS[0001]This application claims priority to U.S. Provisional Patent Application Ser. No. 61 / 090,129, which is herein incorporated in its entirety, and is related to U.S. Provisional Patent Application Ser. No. 61 / 097,460, which is U.S. patent application Ser. No. ______.BACKGROUND OF THE INVENTION[0002]1. Field of the Invention[0003]The present invention provides a method for posterior cruciate ligament reconstruction and, more particularly, a method for single tunnel double bundle posterior cruciate ligament reconstruction.[0004]2. Related Art[0005]Single tunnel single bundle posterior cruciate ligament reconstruction (STSBPCLR) has long been established as a method of posterior cruciate ligament (PCL) reconstruction. A variety of graft choices are available to surgeons during PCL reconstruction. These choices include autogenous patellar or quadriceps tendon with bone blocks, or hamstring tendons. In addition, patellar tendon or achilles tendon ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61B17/58A61F2/08
CPCA61B17/86A61F2002/0882A61F2/0805A61B17/8869
Inventor DOUGHERTY, CHRISTOPHER P.
Owner DOUGHERTY CHRISTOPHER P
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products