Efficiently distributing video content using a combination of a peer-to-peer network and a content distribution network

a video content and content technology, applied in the field of video streaming, can solve the problems of becoming increasingly difficult for video content providers to deliver high-quality content, and achieve the effect of efficient video content distribution

Inactive Publication Date: 2012-11-22
YALE UNIV +1
View PDF9 Cites 51 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0004]In one embodiment of the present invention, a method for efficiently distributing video content comprises requesting from a tracker unit to join either an existing live streaming channel, a video on demand streaming channel or a video conference, where the tracker unit is configured to keep track of active peers in a peer-to-peer network. The method further comprises receiving a list of active peers participating in the live streaming channel, the video on demand streaming channel or the video conference from the tracker unit. In addition, the method comprises connecting, by a processor, to a subset of peers in the list provided by the tracker unit to become neighbors in the peer-to-peer network. Additionally, the method comprises receiving a missing piece of video content from one of the neighbors in the peer-to-peer network or from a content distribution network server based on where the missing piece of video content is to be stored in a video buffer.

Problems solved by technology

As a result, it is becoming increasingly difficult for these providers to deliver high quality video content due to their limited network resources.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Efficiently distributing video content using a combination of a peer-to-peer network and a content distribution network
  • Efficiently distributing video content using a combination of a peer-to-peer network and a content distribution network
  • Efficiently distributing video content using a combination of a peer-to-peer network and a content distribution network

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0020]The present invention comprises a method, system and computer program product for efficiently distributing video content. In one embodiment of the present invention, a peer-to-peer network and a content distribution network are used in combination to distribute video content. A content distribution network relies on servers distributed across the Internet to achieve high quality content delivery at a high cost. A peer-to-peer network distributes content among peers without incurring server side cost but may experience poor performance. The use of both the peer-to-peer network and the content distribution network are leveraged in a manner that achieves high content delivery and low cost by allowing the peer-to-peer network to serve as much content as possible while using the content distribution network to bootstrap the content in the peer-to-peer network and using it as a fallback whenever the peer-to-peer network has insufficient bandwidth, insufficient quality or when the mi...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A method, system and computer program product for efficiently distributing video content. A peer-to-peer network and a content distribution network are used in combination to distribute video content. A content distribution network relies on servers distributed across the Internet to achieve high quality content delivery at a high cost. A peer-to-peer network distributes content among peers without incurring server side cost but may experience poor performance. The peer-to-peer network and the content distribution network are leveraged in a manner that achieves high content delivery and low cost by allowing the peer-to-peer network to serve as much content as possible while using the content distribution network to bootstrap the content in the peer-to-peer network and using it as a fallback whenever the peer-to-peer network has insufficient bandwidth, insufficient quality or when the missing piece of video content in the video buffer of the client device has an immediate deadline.

Description

TECHNICAL FIELD[0001]The present invention relates to video streaming, and more particularly to efficiently distributing video content using a combination of a peer-to-peer network and a content distribution network.BACKGROUND[0002]Usage of the Internet for distribution of video is increasing in popularity. Video traffic over the Internet may be broadly classified into three categories: (1) live video streaming; (2) video on demand; and (3) video conferencing. In live video streaming, the video is broadcasted live over the Internet which is watched by participants at approximately the same time. In “video on demand,” users can select and watch a video at a particular time and can even forward and rewind the video to an arbitrary offset. In video conferencing, users located at two or more locations are allowed to interact via two-way video and audio transmissions simultaneously.[0003]Each of these services places stringent demands on the content providers, Internet service providers ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): H04H60/33
CPCH04H20/08H04L67/06H04N7/15H04L67/1085H04L67/1095
Inventor ZHANG, YINQIU, LILI
Owner YALE UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products