Underground cavern group layout method

A technology of underground caverns and layout methods, which is applied to underground caverns, earthwork drilling, mining equipment, etc., which can solve problems such as complex geological conditions, unconsidered rock strength-stress ratio, and large deformation over time, so as to reduce the risk of construction delays , Reduce the cost of strengthening support, and the effect of scientific design scheme

Active Publication Date: 2013-09-11
POWERCHINA CHENGDU ENG
View PDF4 Cites 17 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0004] Because the critical factor of rock strength-stress ratio is not considered, the layout of the main caverns of large underground caverns determined by existing methods is not reasonable, which may lead to underground After the excavation and unloading of the caverns, the surrounding rocks of the cavern group have relatively serious deformation and damage phenomena, such as rockburst, large aging deformation, large relaxation depth of the surrounding rock, and fracturing of the surrounding rock, which threaten the safety of the project and cause Delays in construction and increased investment
[0005] For example, the geological conditions of the underground powerhouse of a certain hydropower station are extremely complex, the scale of the caverns is large, and the maximum principal stress of the measured factory area is 20.0-35.7MPa. The compressive strength is only 60-75MPa, and the rock strength is obviously low
During the construction and excavation process, large time-dependent deformation of the surrounding rock of the cavern, obvious dislocation of cracks in the high side wall, splitting damage of the surrounding rock at the arch waist downstream of the main powerhouse, flaking of the rock mass, and fracturing of the surface rock mass occurred during the unloading of the surrounding rock. At

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0013] The present invention will be further described below.

[0014] The present invention firstly determines the position of the main cavern, then determines the axis orientation of the main cavern, then determines the thickness of rock pillars between the main caverns, and finally determines the shape of the main cavern. When determining the position of the main cavern, firstly measure the When the rock strength-stress ratio is 2.0-4.0, the thickness of rock mass from the outer edge of the main cavern to the valley slope should be greater than 400m; when the rock strength-stress ratio is 4.0-7.0, the thickness of the rock mass from the outer edge of the main cavern to the valley slope should The thickness of the rock mass on the surface is 200-400m; when the rock strength-stress ratio is greater than 7.0, the thickness of the rock mass from the outer edge of the main cavern to the valley slope is 150-200m. The rock strength-stress ratio refers to the ratio of the saturated...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention discloses a large-scale underground cavern group layout method applied to water conservancy and hydropower engineering and underground storage cavern engineering. The underground cavern group layout method can give overall consideration to major factors having influences on underground cavern adjoining rock stability, particularly gives overall consideration to the crucial factor of the rock strength-stress ratio, enables a large-scale underground cavern group layout designing scheme to be scientific, and is overall in considered factors. The method includes the following steps: firstly, determining the positions of main caverns, then determining the axis directions of the main caverns, determining the thickness of a rock pillar between the main caverns, and finally determining cavern shapes of the main caverns. When the cavern shapes of the main caverns are determined, each main cavern is divided into an underground main power house, a main transformer chamber and a tail water surge chamber according to functions, the hole shape of each underground main power house and the hole shape of each main transformer chamber are in circular arch straight wall shapes or egg shapes, and each tail water surge chamber is in a cylinder shape or a gallery shape.

Description

technical field [0001] The invention relates to a method for arranging underground caverns, in particular to a method for arranging underground caverns used in water conservancy and hydropower projects and underground storage projects. Background technique [0002] In the fields of water conservancy and hydropower projects, underground storage projects, etc., it involves the rational layout and design of underground caverns, especially in the underground powerhouses of hydropower stations in western my country. Due to the characteristics of large buried depth, high ground stress, and complex geological conditions, the stability and safety of the surrounding rock of large underground caverns have become very prominent. In recent years, relevant experts in the field of rock mechanics and underground engineering builders have realized more and more clearly that the basic strength of rocks, in-situ stress, development characteristics of structural planes of surrounding rocks, and...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): E21D13/00
Inventor 张勇肖平西王仁坤宋胜武杨建宏
Owner POWERCHINA CHENGDU ENG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products