Method and device for selecting hyperspectral image band based on key band extraction

A hyperspectral image and band selection technology, which is applied in the field of image processing, can solve the problem of low detection accuracy of hyperspectral image anomalies, achieve the effect of reducing the amount of calculation, achieving good results, and improving the efficiency of band selection

Active Publication Date: 2017-05-31
HANGZHOU DIANZI UNIV
View PDF4 Cites 11 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0004] In view of the deficiencies in the prior art, the purpose of the present invention is to provide a hyperspectral image band selection method and device based on key band extraction, improve the extraction effect of hyperspectral image key ba

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method and device for selecting hyperspectral image band based on key band extraction
  • Method and device for selecting hyperspectral image band based on key band extraction
  • Method and device for selecting hyperspectral image band based on key band extraction

Examples

Experimental program
Comparison scheme
Effect test

Example Embodiment

[0059] Example one

[0060] Step 1: Use the HFC (Harsanyi-Farrand-Chang) method to determine the number of endmembers.

[0061] (1) Calculate the covariance matrix K of the image data L×L And autocorrelation matrix R L×L .

[0062] (2) Calculate the eigenvalue sets of the covariance matrix and the autocorrelation matrix respectively, denoted as {λ 1 ≥λ 2 ≥…λ L }with Where L is the number of spectral bands.

[0063] (3) Calculate the approximate noise variance value of the lth band of the spectral image Among them, M×N represents the number of elements in the image.

[0064] (4) Calculate the probability density function

[0065] (5) Given false alarm probability P F ,according to with Find τ l value

[0066] (6) Satisfaction The number of eigenvalues ​​is the number of bands sought.

[0067] Step 2: Use FNSGA (Fast New Simplex Growing Algorithm) monomorph growth algorithm to achieve endmember extraction and obtain endmember spectrum curve.

[0068] (1) For each pixel r in the image...

Example Embodiment

[0104] Example two

[0105] Steps 1 to 4 of the second embodiment are exactly the same as those of the first embodiment.

[0106] Step 5: Use the band selection method based on the maximum amount of information for the data corresponding to the key band subset to perform band selection.

[0107] Assuming that there are k bands in the key band set, the data of k bands are denoted as Φ 2d ={B 1 ,B 2 ,...,B k }∈R MN×k , Where MN=M×N. The number of bands required for band selection is set to num(num

[0108] For the C matrix obtained in step 4

[0109] (1) Calculate maxC=max(C), define the set

[0110] (2) Calculate the minimum value of each row element of the C matrix and record it as minR i , (I=1,2,3,...,k);

[0111] (3) Calculation And adjust SET=SET∪g;

[0112] (4) Modify the elements of the C matrix so that C(g,i)=C(g,i)=maxC;

[0113] (5) If the number of elements in SET is less than k-num, skip to step (3), otherwise skip to step (6);

[0114] (6) Remove the elements in SET from...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention discloses a method and device for selecting a hyperspectral image band based on key band extraction. The method is specifically implemented by: determining the number of end members of a hyperspectral image, and extracting end member spectrums; extracting a key point subset for each end member spectrum by using a method based on three-point vector included angle and variation amplitude analysis, and combining all the key point subsets to construct a candidate band subset; according to the characteristic that inter-band similarities have clustered distribution, constructing a visibility graph of a local information divergence matrix, and determining a range of an optimum band number; and finally, selecting the best one of an information quantity measuring method and an optimum subset selection criteria method, thereby determining the optimum band subset. Key bands of the end member spectrums provided in the method disclosed by the invention are most distinguishing feature bands among different ground objects, an optimum band is selected from the key band subset, and the time of subsequent band selection can be shortened, so that the band selection method disclosed by the invention can improve the efficiency of band selection.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner HANGZHOU DIANZI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products