Military communications unit for operational and training environments

a technology for operational and training environments and communications units, applied in the direction of instruments, network topologies, targets, etc., can solve the problems of limiting the type of data that is communicated in operational and training environments, and affecting the effectiveness of modern-day training environments

Active Publication Date: 2018-06-07
CUBIC CORPORATION
View PDF0 Cites 7 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0004]A military communications unit is provided that addresses these and other issues by exploiting Long-Term Evolution (LTE) or other relatively high-bandwidth digital communication networks (e.g., cellular networks), which (presently) can deliver tens or even hundreds of Mbps of throughput. The military communications unit is capable of acting as a local wireless hub for a soldier, vehicle, weapon, or other entity by obtaining data from multiple devices via close-range wireless technologies (e.g., Bluetooth®, Wi-Fi®, Zigbee®, etc.) and communicating the data to a training environment or operational network (and similarly relaying information back from the training environment or operational network to the devices). The military communications unit can be flexible in its capacity to relay data by formatting data in accordance with Distributed Interactive Simulation (DIS), High-Level Architecture (HLA), and/or another distributed computer simulation standard. Moreover, the military communications unit may be further capable of “re-banding,” in which they can communicate via VHF, UHF, or other non-cellular frequency bands using cellular (LTE or similar) technology and protocols.
[0005]An example military communications unit, according to the description, comprises a wireless communication interface having a communication network transceiver configured to communicate with a wireless communication network and a plurality of additional transceivers, where each additional transceiver is configured to wirelessly communicate with one or more devices separate from the military communications unit. The military communications unit further comprises a memory, a power supply, and a processing unit powered by the power supply and communicatively coupled with the wireless communication interface and the memory. Processing unit is configured to cause the military communications unit to obtain, via a first transceiver of the plurality of additional transceivers, a first set of data from a first device of the one or more devices separate from the military communications unit, create a first message, indicative of the first set of data obtained from the first device, in accordance with a protocol of a distributed computer simulation standard, and send the first message via the communication network transceiver.
[0006]Embodiments of the military communications unit can include one or more of the following features. The distributed computer simulation standard may comprise Distributed Interactive Simulation (DIS) or High-Level Architecture (HLA). One or more transceivers of the plurality of additional transceivers may be configured to communicate using Bluetooth, Wi-Fi, Zigbee, or Near-Field Communication (NFC), or any combination thereof. The communication network transceiver may be configured to communicate with the wireless communication network using a plurality of radio frequency (RF) bands. The data from the first device may comprise biometric, video, orientation, audio, atmospheric, or activity data, or any combination thereof. The processing unit may be further configured to obtain, from a second military communications unit via the first transceiver of the plurality of additional transceivers or a second transceiver of the plurality of additional transceivers, a second message, and send the second message via the first transceiver of the plurality of additional transceivers. The first set of data may include an orientation of a weapon and an indication that the weapon was fired, the processing unit may be further configured to calculate a trajectory of ammunition fired by the

Problems solved by technology

These traditional technologies were very bandwidth limited, on the order of tens of kbps, thereby heavily restricting what type of data was communicated in operational and training environments.
This scarc

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Military communications unit for operational and training environments
  • Military communications unit for operational and training environments
  • Military communications unit for operational and training environments

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0018]The ensuing description provides embodiments only, and is not intended to limit the scope, applicability or configuration of the disclosure. Rather, the ensuing description of the embodiments will provide those skilled in the art with an enabling description for implementing an embodiment. It is understood that various changes may be made in the function and arrangement of elements without departing from the scope.

[0019]It can be noted that, although embodiments provided herein describe a communications interface or unit using LTE or other cellular technology, other wireless technologies can be used in addition or as an alternative to LTE to communicate with a wide area network (WAN) or other digital communication network. These technologies can include, for example, fifth-generation (5G) New Radio (NR) or Nth generation (NG) wireless standards and protocols. A person of ordinary skill in the art will appreciate that such standards evolve, and that new equivalent standards may...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A military communications unit that utilizes a relatively high-bandwidth digital communication networks (e.g., cellular networks) is capable of acting as a wireless communications hub for a soldier, vehicle, weapon, or other entity. The military communications unit can obtain data from multiple devices via close-range wireless technologies and communicate with training or operational networks. The military communications unit can be flexible in its capacity to relay data by formatting data in accordance with Distributed Interactive Simulation (DIS), High-Level Architecture (HLA), and/or another distributed computer simulation standard. Moreover, the military communications unit may be further capable of “re-banding,” enabling communications using cellular protocols and/or standards in non-cellular frequency bands.

Description

CROSS-REFERENCES TO RELATED APPLICATIONS[0001]The present application claims the benefit under 35 USC § 119(e) of U.S. Provisional Application No. 62 / 429,628, filed on Dec. 2, 2016, entitled “Individual LTE Communications Interface,” which is incorporated by reference herein in its entirety.BACKGROUND[0002]Traditional simulated training environments for military applications, such as multiple integrated laser engagement system (MILES), typically used analog radios communicating in Very High Frequency (VHF) and / or Ultra High Frequency (UHF) frequency bands for voice and data communication. Operational communication networks traditionally used similar technology. These traditional technologies were very bandwidth limited, on the order of tens of kbps, thereby heavily restricting what type of data was communicated in operational and training environments.[0003]For example, in a MILES training environment with 1000 soldiers, the communication network used by the training environment may...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): H04B1/00H04B1/38F41G3/26
CPCH04B1/0064H04B1/38F41G3/26H04W88/06F41J5/14H04W84/18H04W88/04H04L67/12G09B9/003G09B9/006G09B9/00
Inventor ARMSTRONG, MARTYNSMILES, NEALETAYLOR, STEVENTUCKWELL, RODFOX, ANDREW
Owner CUBIC CORPORATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products