Process for improving glucose metabolism, satiety, and nutrient absorption in companion animals

a technology for nutrient absorption and glucose metabolism, which is applied in the field of process for improving glucose metabolism, satiety, and nutrient absorption in companion animals, which can solve the problems of increasing the risk of the animal developing diabetes or other chronic diseases, affecting the health and well-being of the animal, and other animals may have difficulty in digesting and absorbing nutrients from their diets, so as to improve the glucose homeostasis, improve the effect of glucose metabolism and morphology

Inactive Publication Date: 2003-05-06
THE PROCTER & GAMBLE COMPANY
View PDF2 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The present invention meets that need by providing a process for feeding an animal a diet which alters the function and morphology of the gastrointestinal tract (GIT), a large lymphoid organ, in ways which are beneficial to the animal's health and well being. The process involves feeding a companion animal such as, for example, a dog or cat a diet of a pet food composition containing fermentable fibers which have an organic matter disappearance (OMD) of 15 to 60 percent when fermented by fecal bacteria for a 24 hour period, the fibers being present in amounts from about 1 to 11 weight percent of supplemental total dietary fiber. The animal is maintained on the diet for a sufficient period of time to allow the fermentable fibers to ferment in the GIT of the animal. This fermentation results in an upregulation in the secretion of GLP-1 which improves glucose homeostasis and promotes satiety in the animal. The diet also enhances the absorption of nutrients by the animal by increasing the transport of D-glucose and lauric acid which are indicators of carbohydrate and fat absorption, respectively.

Problems solved by technology

However, these nonfermentable fiber-containing diets often impair nutrient absorption by the animal, resulting in undesirable effects on the animal's health and well being.
Certain animals also may have a tendency towards excess caloric intake which increases the risk of the animal developing diabetes or other chronic diseases.
Other animals may have difficulty in digesting and absorbing nutrients from their diets.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Process for improving glucose metabolism, satiety, and nutrient absorption in companion animals
  • Process for improving glucose metabolism, satiety, and nutrient absorption in companion animals
  • Process for improving glucose metabolism, satiety, and nutrient absorption in companion animals

Examples

Experimental program
Comparison scheme
Effect test

example 1

Diets, see Table 1, were formulated to be isonitrogenous and isoenergetic and to provide approximately 19.5 MJ / kg diet with 35% of the energy from carbohydrate, 30% from fat and 35% from protein. The low fermentable fiber (LFF) diet contained wood cellulose as the fiber source and the high fermentable fiber diet (HFF) diet contained a blend of more fermentable plant fibers (beet pulp, Michigan Sugar, Saginaw, Mich.; gum arabic, TIC Gums, Belcamp, Md.; fructooligosaccharides (FOS), Golden Technologies Corporation, Golden, Colo.). The ratio of beet pulp to gum arabic to FOS was about 6:2:1.5. The ratio of beet pulp to FOS was about 4:1.

Adult mongrel dogs (n=16) were utilized. Upon arrival, animals were acclimatized for 7 days and fed a nutritionally complete diet (Can-Pro, Beaumont, Ala.). All dogs were weighed daily and individually fed to meet energy requirements using the formula: Energy intake (MJ)=0.553.times.kg (body weight).sup.0.67. Food was offered once daily between 0900-100...

example 2

Two groups of five adult beagles each with both sexes, were fed two diets that differed only in the source of fiber (see Table 3). Cellulose, which is minimally degraded during passage through the canine gastrointestinal tract (GIT), was added to the control diet (A) at a level of 3.6%. The second diet (B) contained beet pulp (4.2%) and fructooligosaccharides (FOS) (1%), which are fermented by the GIT bacteria of dogs. Chemical analyses showed both diets had 25.9% protein, 11.8% fat, with 6.2% moisture, 5.7% ash, 1.23% calcium, and 0.79% phosphorus. Diet B used a blend of beet pulp and FOS because differences in their rates of fiber fermentation by the intestinal bacteria of dogs. The products of bacterial metabolism of FOS, such as SCFA, should be available more proximally in the GIT compared to those from beet pulp, which is fermented slower. Furthermore, the two sources of fermentable fiber are designed to yield different concentrations and proportions of SCFA. The cellulose (Sol...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
weight percentaaaaaaaaaa
weight percentaaaaaaaaaa
weight percentaaaaaaaaaa
Login to view more

Abstract

A process for feeding an animal a diet which alters the function and morphology of the gastrointestinal tract (GIT), a large lymphoid organ in the animal and which improves glucose metabolism, satiety, and nutrient absorption. The process involves feeding a companion animal such as, for example, a dog or cat a diet of a pet food composition containing fermentable fibers which have an organic matter disappearance (OMD) of 15 to 60 percent when fermented by fecal bacteria for a 24 hour period, the fibers being present in amounts from about 1 to 11 weight percent of supplemental total dietary fiber. The animal is maintained on the diet for a sufficient period of time to allow the fermentable fibers to ferment in the GIT of the animal.

Description

BACKGROUND OF THE INVENTIONThis invention relates to a process involving the use of a pet food composition containing fermentable fibers to improve glucose metabolism, satiety, and nutrient absorption in companion animals such as, for example, dogs and cats.Recent research has suggested that dietary fiber is important for its fermentation properties in the large intestine of dogs and cats. For example, Reinhart, U.S. Pat. No. 5,616,569, describes the addition of fermentable dietary fiber to a pet food composition for the purpose of maintaining normal gastrointestinal function and ameliorating chronic diarrhea in animals. Howard et al, FASEB J. (1996) 10:A257, teach that fermentable fiber consumption by dogs can result in the partition of waste nitrogen from the urine to the feces, increasing nitrogen excretion through the feces of the animal. Sunvold et al, J. Anim. Sci. (1995) 73:1099-1109, found that feeding moderately fermentable fibers to dogs could promote gastrointestinal trac...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Patents(United States)
IPC IPC(8): A23K1/14A23K1/16A23K1/18A61K31/715A61K36/68A61K36/752A61P1/18
CPCY10S426/805A23K10/30A23K20/163A23K50/40A61P1/18A61P3/00A61P3/08Y02P60/87
Inventor SUNVOLD, GREGORY D.HAYEK, MICHAEL G.
Owner THE PROCTER & GAMBLE COMPANY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products